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The purpose of this study is to design and develop a cognitive diagnosis 

system for intelligent tutoring. The cognitive diagnosis system proposed in this 

dissertation is called PSCD (Production System for Cognitive Diagnosis).

PSCD is intended for intelligent tutoring with possible relevance to decision 

aiding.

This dissertation is based on two assumptions. First, it is assumed that 

perspectives and methodologies of cognitive science provide a starting point 

for integrating decision-making studies and cognitive studies (Simon, 1979). 

Second it is assumed that integrating theories and building an integrated theory 

or theories into a cognitive architecture provide opportunities to realize practical 

applications (Newell, 1990). Basing on these two assumptions, the study 

attempts to integrate three theories of human information processing and to 

build the integrated theory into PSCD.

Three theories considered in this study are heuristic search, production 

systems architecture, and constructivism. These three theories act as 

constraints in setting the design specification of PSCD in the huge space of 

alternative designs. PSCD that are developed henceforth is applied to a
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counting task for initial validation, and to a transportation problem solving task 

which is the main task of this dissertation.
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1
Chapter 1 INTRODUCTION

The purpose of this study is to design and develop a computational 

model of cognitive diagnosis for intelligent tutoring. The cognitive diagnosis 

system proposed in this dissertation is called Production System for Cognitive 

Diagnosis (PSCD). PSCD is intended for intelligent tutoring with possible 

extension to decision aiding. Cognitive diagnosis refers to the process of 

inferring a person’s cognitive state from his performance (Ohlsson, 1986a; 

VanLehn, 1988). Cognitive diagnosis is a central problem in developing an 

intelligent tutoring system (ITS) which is a computer system that helps students 

learn. In addition, cognitive diagnosis is an essential capability of a knowledge 

communication system. Knowledge communication is the idea that human- 

computer interactions can be viewed as causing or supporting the acquisition of 

one's knowledge by the other, via a restricted set of communication operation 

(Wenger, 1987). Given this definition, the idea of knowledge communication is 

applicable without suspicion to ITSs, also appropriate to expert systems and 

even to any intelligent computer systems that are intended for human uses.

Cognitive diagnosis is a difficult problem because a person’s cognitive 

states are not observable and must be inferred from observable behaviorai 

data. In addition, there is a methodological problem in determining a unique 

representation and process, used to describe cognitive states, that might have 

produced observed behavioral. It is generally known that the same behavioral 

data can be reproduced by a number of different cognitive representations and 

processes (Anderson, 1990). The problem is called the nonidentifiability 

problem.

The nonidentifiability problem is viewed so serious and intractable that 

Anderson (1990), for example, proposed to avoid inferring cognitive states from
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behavioral data but to determine cognitive states on the basis of the normative 

theory of optimization. The Anderson's (1990) approach to the 

nonidentifiability problem, as Newell (1990) pointed out, arises from a narrow 

focus on behavioral data in identifying a unique representation and process. 

Another way of overcoming the nonidentifiability problem is to integrate large 

and diverse collections of knowledge that would help pin down to a unique 

representation and process of cognitive states. A repository of such large and 

diverse knowledge is called a unified theory (Newell, 1990).

A unified theory is argued to result in great increases in identifiability. The 

unified theory approach calls for brining more constraints in the design of a 

system and approximating real situations as close as possible. Through the 

process of developing a unified theory, implementing it in a system, and 

comparing behaviors of a system to real behavioral data, there is more 

opportunity to discover impacts and roles of each constraint and to explore 

validity of alternative design specifications. The unified theory approach 

reduces the degrees of freedom that allow so many models to coexist with the 

same data. Such a way of eliminating alternative models is termed as the 

sufficiency criterion (Newell, 1973a).

The approach taken in this study is the unified theory approach. The 

unified theory approach merits attention because it provides a way of 

overcoming the nonidentifiability problem. In addition, it is the unified theory 

approach that opens the way for practical application, for example the cognitive 

diagnosis system of this study. This is the case because the more unified a 

theory, the more approximate a system to real situations, and the more a system 

practically useful.
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This cognitive diagnosis system proposed in this study can be used as a 

component in decision aids. Developing decision aids that would help decision 

makers make better decisions has become the central concern in decision

making studies. In this introductory chapter, the perspective of this study is 

outlined and discussed in relation to decision-making studies (Section 1.1) and 

to various kinds of decision aids (Section 1.2). Section 1.3 shows the overview 

of this study.

1.1 Decision-Making

Decision-making is a subject which has attracted the attention of scholars 

of a number of different disciplines (Ungson and Braunstein, 1982; Janis and 

Mann, 1977; Simon, 1960). Economists, equipped with a theory of rational 

choice, have studied how human decision-making causes, and is caused by, 

economic activities (Demski, 1972; Kreps, 1988; Schoemaker, 1991); 

psychologists, especially behavior decision psychologists, have described and 

explained the point of departure of human performance from the normative 

theory (Simon, 1955,1960,1976; Hogarth, 1980; Wright, 1985; Hogarth and 

Reder, 1987; Hogarth, 1990); decision analysts have developed tools intended 

to help decision makers do what economists often assume they are already 

doing (Lee, 1972; Raiffa, 1974; Keeney and Raiffa, 1976; Winterfeldt and 

Edwards, 1986; Lee et al, 1990); and artificial intelligence researchers have 

tried to develop computer-implemented tools for aiding decisions or for learning 

how to make decisions (Buchanan and Shortliffe, 1984; Clancey, 1986; 

Anderson et al., 1985).

Business researchers, drawing concepts and methodologies from a 

number of different disciplines, have studied individual and organizational
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decision-making in a number of different business tasks (Argyris, 1977; Libby, 

1981; Bailey, Jr., 1987; Bhaskar and Dillard, 1977). Especially, the behavioral 

sciences have exerted significant influence on research in business (Ungson 

and Braunstein, 1982), and business research that uses concepts and 

methodologies of the behavioral sciences is termed behavioral research 

(Caplan, 1988). The term "behavioral sciences" is usually viewed by business 

researchers as encompassing psychology, organization theory, and sociology. 

These three disciplines deal with issues at different levels: psychology deals 

with issues at the individual level; organization theory at the organization level; 

and sociology at the society level.

Psychology, especially behavioral psychology, has been extensively 

applied to a number of business problems (Libby, 1981; Ko and Mock, 1988; 

Shields, 1988). In the tradition of behavioral psychology, much behavioral 

research has represented human decision-making in statistical models such as 

regression (Hursch et al., 1964; Slovic et al., 1977; Libby, 1975), ANOVA 

(Hoffman et al., 1968; Ashton, 1974), and multidimensional scaling (Green and 

Rao, 1972; Libby, 1979), or in variants of statistical decision theory such as 

heuristics (Tversky and Kahneman, 1974; Joyce and Biddle, 1981; Waller and 

Felix, 1987). Although this body of research has resulted in useful insights and 

an extensive amount of empirical data, criticisms have also been raised. Many 

studies that used linear models to represent HIP showed very high levels of 

predictive accuracy. The very high predictive power of such linear models, 

however, is argued to be largely an artifact of the mathematics, because linear 

models were found to be very robust even when assumptions were violated 

(Dawes and Corrigan, 1974). Research in cognitive heuristics and biases also 

was subject to such criticisms as lack of attempts to understand decision
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processes and to build decision aids which would improve decision-making 

(Shanteau, 1989).

Statistical and heuristics/biases studies have given rise to many different 

types of theories. Underlying these decision-making studies is the perspective 

of information processing psychology. Information processing psychology 

views a decision maker as an information processing system which takes input 

from the environment, processes input, and produces output (Figure 1.1). 

Produced output can be further used as input to an information processing 

system.

Figure 1.1. An informations processing system

Input OutputProoess

Viewing a decision maker as an information processing allows to 

characterize different perspectives of decision-making studies, because in this 

view models of decision maker are emphasized. For example, the perspective 

of economists is a rational man, statistical decision-making studies view a 

decision maker as an intuitive statistician, and the view of behavioral decision 

theorists is a fallible man. The perspective taken in this study is a constructive 

mind, which will be explained in detail Chapter 4. The hypothesized 

perspective of an information processing system determines the frame of 

reference of the study (Clancey, 1991). Each perspective and associated 

methodologies shape the degree and extent of models of decision maker. In 

fact, it appears that decision-making studies have progressed to develop more
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descriptively valid and powerful models of decision maker. In other words, 

decision-making researchers have attempted to develop models of decision 

maker that are powerful enough to reflect many observed aspects of decision

making.

Thus, this study proposes two requirements for a theory of decision

making. First, a theory of decision-making must have a model of a decision 

maker. This model is called cognitive model in cognitive science, and often 

called user model in human-computer interaction literature or student model in 

intelligent tutoring system literature. Studies of decision-making can be viewed 

progressing to more powerful representations or models of decision maker. 

Second, a theory of decision-making must be able to predict and explain 

human decision behavior with a model of a decision maker. This includes not 

only correct performance but also faulty performance. Only then can a theory of 

decision-making be realized in a decision aid that is able to provide "true" 

support to decision maker, and prove its usefulness. In fact, a final test for a 

theory of decision-making is its utility for aiding and improving decisions.

Reviewing decision-making studies led to two general conclusions: (a) 

humans tend to err and (b) even this tendency, humans can successfully 

perform difficult tasks, given time, help, and tools (Libby, 1981; Reason, 1990; 

Winterfeldt and Edwards, 1986). These observations led to increased interest 

in understanding human errors, and in designing and developing decision aids 

which may help humans avoid such errors.

There is a variety of decision aids which rely on different theories and 

methodologies. This study employs theories and methodologies of cognitive 

science to propose a model of cognitive diagnosis. This study assumes that 

abilities of both decision-making and problem-solving originate from one mind,
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though there is a difference in the type of tasks being addressed. Decision

making typically involves ill-structured problems whereas problem-solving 

usually concerns well-structured problems. It may be the case that there are 

some invariants that do not differ in both cognitive processes. Those invariants 

constitute a functional architecture of mind. After all, as Newell (1980,1990) 

observed, it is one mind that solves a problem, makes a decision, and that 

produces all aspects of intelligent behavior.

This study addresses the problem of cognitive diagnosis, often called 

user modeling or student modeling. Cognitive diagnosis can be used for 

several purposes: determining if the user's performance is correct by 

comparing an inferred model to an expert model; explaining why the 

performance is wrong; predicting his or her performance in future tasks. Such 

abilities enable many applications to be possible: preventing a human error 

that can make a catastrophic disaster in a dangerous situation, for example 

nuclear plant failure; enhancing explanation capability of expert systems, 

automating protocol analysis; and training novices or students. The intended 

use of PSCD in this study is for intelligent tutoring.

1.2 Decision Aids

Designing decision aids that improve decision-making has been the 

central concern in Management Information System (MIS), and especially in the 

subfield of MIS, known as Decision Support System (DSS). MIS is a computer- 

based system for collecting, storing, retrieving, and processing information that 

is used, or desired, by managers in the performance of their duties (Ein-Dor and 

Segev, 1977; Davis and Olson, 1985). MIS typically involves in organizing 

information so that a decision maker may easily assess and understand
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information necessary for performing his or her duties. Such systems have in 

general proven to be most useful, but the idea behind MIS has a serious 

limitation. MIS mostly focuses on organizing information, and incorporates very 

few decision-aiding ideas.

A more powerful system may provide decision models that can aid 

decisions, as well as easy access to organized information. A class of systems, 

called DSS, places more emphasis on "support" than does MIS. DSS supports 

decision makers in their attempts to solve semistructured problems and 

provides interactive means to test alternative solutions for their consequences 

(Gorry and Scott Morton, 1971; Keen and Scott Morton, 1978; Alter, 1980).

DSS has a more powerful processing capability than MIS in general, but Its 

processing capability is commonly limited to answer "what-if..." questions.

Recent advances in artificial intelligence (Al) have introduced a new way 

of building the most interesting kinds of decision aids, expert systems. There 

have been many studies trying to apply AI methodologies to difficult business 

problems (Paradice and Courtney, 1989; O'Leary, 1987; Vasarhelyi, 1987; 

Peters et al., 1989; Blanning, 1990; Pau et al., 1989). An expert system is a 

computer program that exploits the judgments made earlier by an expert in the 

task at hand. These judgments, which are represented in a computer with the 

use of a computational language, can provide both expertise and procedural 

advice that a decision maker may find helpful.

The process of building an expert system is often called knowledge 

engineering (Waterman, 1986). Knowledge engineering involves extracting 

from the human experts their procedures, strategies, and rules of thumb for 

problem solving, and building this knowledge into the expert system.

Knowledge engineering extracts humanlike knowledge from experts, but is not
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concerned with cognitive fidelity of various ways of using such knowledge. In 

other words, the knowledge engineering methodology deploys humanlike 

knowledge in nonhuman ways. One pitfall of using such a methodology is the 

potential absence of knowledge communication in resulting systems (Anderson, 

1988).

Knowledge communication, in fact, is the goal of any computer system 

intended for human uses. When a computer system lacks cognitive fidelity, a 

computer system may not understand what a user intends to communicate to it, 

and a user also may have difficulties in understanding what a computer tries to 

say. It may be the case that true knowledge communication is possible only 

when both sides have a model of each other (Anderson, 1988). One 

requirement for a computer system, then, is to keep a cognitive model of the 

user, so that it can interpret the user's actions with a cognitive model. This 

approach is called the cognitive modeling or cognitive simulation approach, 

which is at the heart of cognitive science.

Cognitive modeling, often called computational modeling because 

cognitive modeling typically presumes the use of a computer for modeling, is 

more active in ITS studies than in expert systems studies. This is primarily 

because of the necessity of maintaining a student model in ITS. The cognitive 

modeling approach has also been advocated as a promising approach for 

studying human knowledge (Anderson, 1987). The best way to study human 

knowledge, as Anderson (1987) argued, is to look for differential learning 

outcomes in pedagogical experiments that manipulate instructional experience, 

and therefore the ITS paradigm provides a particularly fruitful way to implement 

such experiments.
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The cognitive modeling approach has also been proposed as a 

reasonable methodology for acquiring a working expert system (Anderson, 

1988; Slatter, 1987). Although the constraint of being true to human behavior 

has been more of a burden than a stimulus, it has also been argued that, by 

closely mapping between human behavior and cognitive models, it is possible 

to augment psychological theory and computer science technology as well 

(VanLehn, 1991).

This study uses the cognitive modeling methodology in its attempt to 

develop a cognitive diagnosis system. The cognitive modeling methodology is 

advocated in this study because the methodology allows to build more 

descriptively valid and also powerful representations of users. The 

methodology used in this study, however, is different from the traditional 

cognitive modeling methodology which typically relies on various process 

tracing methods in order to construct a computational model. In traditional 

cognitive modeling studies, theories of human information process are 

constructed typically by analyzing verbal protocols (e.g., Newell and Simon, 

1972; Klahr and Wallace, 1976). In this case, theory construction is bottom-up, 

i.e., from data to theories. In contrast, this study takes the perspective of unified 

theory, in which theory construction is top-down. In the unified theory approach, 

theories are embedded into a system and behaviors of a system are compared 

to data. This study attempts to integrate three theories of HIP and build them 

into a system, PSCD. These three theories are heuristic search (Newell and 

Simon, 1976), production system architecture (Klar et al., 1987), and 

constructivism (Resnick, 1982; Payne and Squibb, 1990).

Unified theories are implemented in cognitive architectures. A cognitive 

architecture or functional architecture is a fundamental design specification of
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an information processing system (Pylyshin, 1984). A cognitive architecture 

describes the part of HIP that do not change. The notion of architecture 

differentiates two parts of HIP, the part that changes rapidly and the other part 

that changes slowly if at all (VanLehn, 1991). Hence, a cognitive architecture is 

a partial description of a human information processing system (HIP), but 

describes the essential aspects of HIP. This study proposes that three theories 

considered in this study must be the part of a cognitive architecture.

1.3 Overview

This study integrates three theories of HIP and implement them in PSCD, 

an architecture for cognitive diagnosis (Figure 1.2). Since these three theories 

act as constraints in setting the design specification of PSCD in the huge space 

of alternative designs, they are also called constraints in this study. Two 

constraints come from major hypotheses that have emerged in cognitive 

science in the past decade. The first hypothesis is that heuristic search is a 

fundamental process of HIP (Newell and Simon, 1976; Newell, 1990). The 

second is that a production system is the architecture of HIP system (Langley, 

1983b; Klar et al., 1987; Newell, 1990). In Chapters 2 and 3, these concepts 

will be defined and explained.

Constructivism is another constraint imbedded in this model. Underlying 

diverse research done by cognitive, developmental, and educational 

psychologists is the so-called constructivist assumption about how skills are 

learned (Gelman and Meek, 1986; Resnick, 1984; Brown and VanLehn, 1980; 

Smith et al., 1989). The constructivist assumption states that knowledge is not 

directly absorbed but is constructed by each individual. In this view, knowledge 

is no longer viewed as a reflection of what has been given from the outside; it is
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a personal construction from experience and what the individual knows. This 

construction can be either syntactic (Brown and VanLehn, 1980; Young and 

O'Shea, 1981) or semantic in nature (Smith et al., 1989; Ohlsson and Rees, 

1991). A through review of empirical data and conceptual studies has led to the 

conclusion that semantic construction is more fundamental in explaining human 

skill acquisition and performance. This constraint will be discussed in Chapters 

4 and 5.

With these constraints in mind, various methodologies of cognitive 

diagnosis are reviewed in chapter 5. Three constraints and implementing 

methodologies are finally integrated in Chapter 6. In this chapter, PSCD is 

formally proposed. Then PSCD is applied to two different tasks for its 

validation. Chapter 7 discusses some validation issues and presents the 

results of these applications in Chapter 7. Finally limitations of this study and 

future directions are discussed in Chapter 8.
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Figure 1.2. Overview
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Chapter 2 The Heuristic Search Constraint

The heuristic search constraint states that intelligence involves heuristic 

search (Langley, 1983b; Card et al., 1983). Heuristic search is the major 

hypothesis in cognitive science. This chapter provides grounds for the use of 

heuristic search as a constraint in PSCD. Since the concept of heuristic search 

emerges in cognitive science studies, perspectives of cognitive science are 

introduced (Section 2.1) and then concepts underlying heuristic search are 

discussed. The hypothesis of heuristic search is based on three hypotheses 

that have taken a significant role in many cognitive studies. These hypotheses 

are the physical symbol system hypothesis (Section 2.2), the problem space 

hypothesis (Section 2.3), and the bounded rationality hypothesis (Section 2.4), 

and discussed in the respective section. Finally, Section 2.6 summarized 

arguments for heuristic search.

2.1 Cognitive Science

The term "cognitive science" has been used in various studies, mostly in 

artificial intelligence and psychology studies, in a number of different ways 

(Posner, 1989; Kintsch et al., 1984; Pylyshyn, 1984). Generally, cognitive 

science is viewed as dealing with the nature of intelligence from the perspective 

of computation (Posner, 1989). Simon (1989, p. 2) defined cognitive science as 

"the study of intelligence and its computational processes in humans (and 

animals), in computers, and in the abstract." This definition shows that the 

scope of cognitive science studies covers human, computer, and abstract 

intelligence. Simon provided examples of studies for each category. He 

regarded experimental and cognitive psychology as an example of the 

computational study of organismic intelligence because it studies those forms of
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intelligence exhibited by people, rats, and pigeons in the laboratory. Computer 

science, especially the branch of computer science called "artificial 

intelligence", is provided as an example of the study of intelligence exhibited by 

machines. Some examples of the study of intelligence in the abstract are formal 

logic, statistical decision theory, and the theory of maximization of expected 

utility. This study falls in the category of the study of organismic intelligence 

because of its concern with human learning and problem solving.

An important word in Simon's definition of cognitive science is 

"computation." The computational view of cognition is seen as the fundamental 

assumption in cognitive science (Pylyshyn, 1980, 1984). The view that 

cognition can be understood as computation is ubiquitous in modern cognitive 

theorizing, even among those who do not use computer programs to express 

models of cognitive processes. There has been much discussion whether the 

human mind can be understood as computation (Simon and Newell, 1972; 

Pylyshyn, 1984; Anderson, 1983; Newell, 1990; Simon, 1990). Simon and 

Newell, together and independently, have supplied strong rationales for 

cognitive science from its inception, and even guided cognitive science 

research.

The computational view of cognition is based on several assumptions. 

First, both computers and human cognitions are artifacts that adapt to their outer 

environments in order to satisfy their goals within the limitations of the inner 

systems (Simon, 1979). The inner system is a organization of the system 

capable of attaining goals. Since they are artifacts, they both are subject to 

design. In other words, if the inner system of a system is properly designed, it 

will be adapted to the outer environment. Second, computer simulation, or 

often called computational modeling, is a useful methodology to explore
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alternative organizational assumptions. Computational modeling is a technique 

for understanding and predicting the behavior of systems. Simon provided two 

reasons why computational modeling is useful in finding the laws of behavior 

governing components. The reasons are that first,, only a few properties 

abstracted from the complex reality are of interest. The more are abstracted 

from the detail of a set of phenomena, the easier to simulate. Second, it is not 

necessary to know entire internal structure but only that part of it that is crucial to 

the abstraction. Therefore, without identity of the inner systems, simulation is 

possible because the aspects of interest arise out of the organization of the 

parts, independent of all but a few properties of the individual components.

From the pioneering works of Simon and Newell, many studies have 

been conducted in the fields of artificial intelligence and cognitive psychology. 

Due to extensive interactions and collaborations between these two fields, 

these two fields collectively merge into a new field known as cognitive science.

2.2 The Physical Symbol System Hypothesis

In studying artifacts with the computational modeling methodology, the 

notions of symbol structures and formal operations are important. In the 

simplest terms, a symbol is something that stands for something else. This 

something else is usually called the designation of the symbol. It is the thing that 

the symbol represents. The designation may be a physical object or a concept, 

but the symbol itself is physical.

The idea behind symbolic computation is that symbols stand for anything 

at all. Typically a symbolic program takes as its input one or more symbol 

structures, representing the initial state of some problem, and returns as its . 

output a symbol structure, representing a terminal state of solution. A symbol
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structure is both well-formed in terms of the syntactic rules (which are used to 

form symbol structures out of symbols in such a way that the resulting structures 

have a meaning) and has been derived by the application of legal 

transformations (which turn symbol structures into other symbol structures).

A pioneering study by Newell and Simon (1976), which facilitated the 

development of the computational view of mind, proposed a physical symbol 

system hypothesis. The physical symbol system hypothesis is stated as follows:

Physical Symbol System Hypothesis. A physical symbol system has the 
necessary and sufficient means for general intelligent action

A physical symbol system is a machine, located in some environment, 

with a memory, operators, control, and an input, and over time, it produces an 

evolving collection of symbol structures. The condition of "necessary" means 

that any system that exhibits general intelligence will prove to be a physical 

symbol system. The condition of "sufficient" means that any physical symbol 

system of sufficient size can be organized further to exhibit general intelligence. 

From these claims follow two empirical hypotheses: 1. that computers can be 

programmed to think (sufficient), and 2. that the human brain is a physical 

symbol system (necessary). These hypotheses are tested by programming 

computers to perform the same tasks that researchers used to judge how well 

people are thinking, and then by showing that the processes used by the 

computer programs are the same as those used by people performing these 

tasks. Thinking-aloud protocols, records of eye movement, reaction times, and 

many other kinds of data are used as evidence to make the comparison. Simon 

(1990) argued that the physical symbol system hypothesis has been tested so
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extensively over the past 30 years that it can now be regarded as fully 

established.

The hypothesis dictates that human cognition can be realizable in a 

physical symbol system because a computer is a member of a family of artifacts 

called physical symbol system as human cognition does.

2.3 The Problem Space Hypothesis

Newell (1980, 1990) argued that the problem space representation 

fundamental to all physical symbol systems, including ail categories of cognition 

such as reasoning (Johnson-Laird, 1983; Johnson-Laird, 1990), problem

solving (Newell and Simon, 1972; Simon, 1983), and decision processes 

(Slovic et al, 1977; Kahneman et al., 1982). Newell and Simon (1972) derived 

the concept of a problem space from extensive work in artificial intelligence, and 

provided a prototypic example of the concept. Since then, many studies 

characterized as heuristic search have analyzed problem solving tasks in 

problem space terms. The problem space hypothesis is stated formally as 

follows (Newell, 1980):

Problem Space Hypothesis. The fundamental organizational unit of all 
human goal-oriented symbols activity is the problem space.

Problem Space. A problem space consists of a set of symbolic structures 
(the states of the space) and a set of operators over the space. Each 
operator takes a state as input and produces a state as output, although 
there may be other inputs and outputs as well. The operators may be 
partial (i.e., not defined for all states). Sequences of operators define paths 
that thread their way through sequences of states.
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Problem. A problem in a problem space consists of a set of initial states, a 
set of goal states, and a set of path constraints. The problem is to find a path 
through the space that starts at any initial state, passes only along paths 
that satisfy the path constraints, and ends at any goal state.

Given a problem in a problem space, the only way a system can solve 

the problem is by searching in the space, working out from the current state by 

applying operators, adding new states to the stock to be used at new points of 

search, evaluating whether the result help, etc. Accomplishing this search 

requires performing repeatedly a fixed set of functions, namely search control.

A search system can thus be defined as a problem-solving system consisting of 

three main components: a database, operators, and control strategy (Barr and 

Feigenbaum, 1981). A database describes both the current task-domain 

situation and the goal. The database can have a variety of data structures 

including arrays, lists, sets of predicate calculus expressions, property list 

structures, and semantic networks. The second component of a search system 

is a set of operators used to manipulate the database. The third component of a 

search system is a control strategy for deciding what to do next—in particular 

what operator to apply and where to apply it.

A search space represents the structure of a problem in terms of the 

alternatives available at each possible state of the problem. The basic idea is 

that from a given state in a problem, all-possible next states can be determined 

with a small set of rules, called transition operators. For example, in a chess 

game, the original state is the board position at the beginning of the game. The 

legal-move generators correspond to the rules for moving each piece. So all of 

the next states of the game (i.e., the board configurations after each of White's 

possible first moves) can be generated by applying the move generators to the
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original positions of the pieces. Similarly, all the possible states after Black's 

first response can be generated.

A somewhat straightforward way to find the winning move is to try all the 

alternative moves, then try all the opponent's responses to these moves, and 

then try all the possible responses to those, until all the possible continuations 

of the game have been exhausted and it is clear which was optimal. The 

problem with this solution is that, for interesting problems like chess, there are 

far too many possible combinations of moves to try in a reasonable amount of 

time on a machine of conceivable computational power. This problem, called 

combinatorial explosion, is an important general difficulty for Al systems in all 

applications.

2.4 The Bounded Rationality Hypothesis

The problem of combinatorial explosion shows the limitation of a physical 

symbol system in adapting its behavior to the requirements of a given task. This 

limitation arises because the inner environment of the system places limits on 

the kinds of information processing which the system is capable of. In the case 

of computers, adaptiveness is limited by the theorems of Godel, which prove 

that every symbol processing system must be incomplete. Far more important 

than the Godel limits, Simon (1976) argued, are the limits imposed by the speed 

and organization of a system's computations, and sizes of its memories. For 

example, playing a perfect game of chess by using the game-theoretic 

minimaxing algorithm is one such infeasible computation, for it calls for the 

examination of more chess positions than there are molecules in the universe.

Similarly, studies of human cognition have revealed that computational 

capabilities of the human mind are limited because of the limited capacity of 

short-term memory and the time required to fixate an item. The facts that human
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short-term memory can hold only a half dozen chunks that an act of recognition 

takes nearly a second, and that the simplest human reactions are measured in 

tens and hundreds of milliseconds instead of microseconds or picoseconds are 

basic physiological constants that determine what kinds of computations are 

feasible in a given type Of task situation and how rapidly they can be carried out. 

From these facts, Simon (1955) proposed one of the essential laws of 

qualitative structure applying to physical symbol systems, including computers 

and the human brain, namely bounded rationality.

Bounded Rationality. Because of the limits on their computing speeds and 
power, intelligent systems must use approximate methods to handle most 
tasks.

2.5 The Heuristic Search Hypothesis

A major way to relax the limits of bounded rationality and to overcome the 

problem of combinatorial explosion is to store in long-term memory knowledge 

and strategies that reduce the computational requirements of tasks. In tasks of 

any complexity, knowledge and strategies do not allow the expert to find an 

optimal solution, but only to find approximations far better than those available 

to native (or naive) intelligence. Simon (1990) suggested that it is possible that 

some common properties, deriving from human bounded rationality, are shared 

by the approximating procedures people use in many kinds of complex 

situations.

Knowledge and strategies take a role of limiting the number of 

alternatives searched at each stage of the look-ahead process to the best 

possibilities. Newell (1990, pp. 98-100) called this type of search as knowledge 

search, which is "the search in the memory of the system for the knowledge to 

guide the problem search," and distinguished it from problem search, which is
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"the search of the problem space." According to Newell, knowledge search 

happens in the inner loop of problem search, and it searches for knowledge that 

can be used to evaluate operators and to evaluate their consequences, that is, 

the resulting new states. Hence, knowledge, often called search control 

knowledge, can take a role in evaluating operators as well as in evaluating 

states. Newell further observed that one could always transfer knowledge from 

the test to the generator, so that new states never were created at all. I.e., there 

is a trade-off relationship between knowledge for operators' evaluation and 

knowledge for states' evaluation. Wherever knowledge is put in, either in the 

generator or in the test, the role of knowledge in problem search is to reduce the 

problem space, and consequently to increase efficiency (Minton, 1988). 

Consequently, it is hypothesized that physical symbol systems solve problems 

by using the processes of heuristic search. More formally, the law is stated as 

follows:

Heuristic Search Hypothesis. A physical-symbol system exercises its 
intelligence by heuristic search, that is, by generating and progressively 
modifying symbol structures with the help of knowledge until it produces a 
solution structure.

Similar to the distinction between knowledge search and problem search 

is the distinction between generative and evaluative selectivity (Ohlsson and 

Rees, 1991). Generative selectivity operates through strategic rules that 

propose good moves. Strategic rules improve the efficiency of search by 

focusing attention on the most promising actions in each state. Evaluative 

selectivity operates through evaluation functions that measure the promise of a 

state. Evaluation functions improve the efficiency of search by focusing
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attention on the most promising states. Confusingly, both strategic rules and 

evaluation functions are called heuristics in the literature (Pearl, 1984). 

Generative selectivity resides in the procedural knowledge whereas evaluative 

selectivity resides in the principled knowledge. The production rules generate 

actions, and the state constraints evaluate the states produced by those actions. 

The performance of the system is a function of both, and one type of selectivity 

can be traded for the other.

2.6 Summary

This chapter provides rationales for heuristic search as a constraint of 

PSCD. It is shown that heuristic search is the fundamental process of an 

intelligent system. The rationales for heuristic search are based on three 

hypotheses. First, the physical symbol system hypothesis states that all 

intelligent system belong to the class of physical symbol systems. Second, it is 

hypothesized that all physical symbol systems represent problems or tasks as 

problem spaces. Third, all physical symbol systems have limitations in 

processing capabilities, i.e., have bounded rationality. Integrating these 

hypotheses yield the heuristic search hypothesis which states that all physical 

symbol systems exercise intelligence by heuristic search through problem 

spaces.

Designing a heuristic search system intended to show intelligent 

behaviors such as that demonstrated by a human is not simple. A notorious 

problem lies in how to represent knowledge (Barr and Feigenbaum, 1981). The 

research area of knowledge representation has a long, complex, and as yet 

non-convergent history (Brachman and Levesque, 1985). This is basically 

nonidentifiability problem, i.e, difficulties in finding an appropriate
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representation and process. Another problem in developing a heuristic search 

system is the irrelevant-specification problem (Pylyshyn, 1984; VanLehn, 1984; 

Kieras, 1985; Neches, 1982). Because a cognitive model attempts to emulate 

humans' cognitive processes, the computer program of the cognitive model will 

contain codes motivated by psychological assumptions about the humans' 

cognitive processes. The computer program may also contain codes which are 

not motivated by psychological assumptions but are written for convenience. 

When the computer program includes the convenience code, the problem is 

that, because of the interaction between the motivated code and the 

convenience code, one has no guarantee that the behavior of the program 

depends on the motivated code. A solution to this irrelevant-specification 

problem as well as the nonidentifiability problem is to distinguish an 

architecture from a program (Newell, 1973; Newell, 1990). An architecture is 

the fundamental design specification of an information processing system, and 

is based on psychological hypotheses. The architecture provides 

psychologically motivated programming language. Therefore, a program 

written in the architecture may not contain any convenience code.
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Chapter 3 THE PRODUCTION SYSTEM CONSTRAINT

Production system architecture is the second constraint for PSCD. A 

production system can be viewed as a basic architecture which provides a 

basic structure for more integrated architecture, for instance Newell's SOAR 

(1990) and Anderson's ACT* (1983). There are several basic cognitive 

architectures in cognitive science. Among them are schema architectures (e.g., 

Schank and Abelson, 1977; Riesbeck and Schank, 1989), neural architectures 

(e.g., Rumelhart and McClelland, 1986), and production system architectures 

(e.g., Newell and Simon, 1972; Newell, 1973b; Anderson, 1983; Newell, 1990).

This chapter discusses a production system architecture (Section 3.1.1). 

Production system architectures are described along with schemata 

architectures, which has been considered as the major alternative (Section 

3.1.2), and advantages of production system architectures are discussed 

(Section 3.1.3). Relationships between production system architectures and 

heuristic search are discussed in Section 3.2.

3.1 Production Systems as Cognitive Architectures

Production systems have been extensively used in cognitive theorizing 

(Langley, 1983b; Anderson, 1983; Newell, 1990). Production systems have 

been a primary cognitive architecture, along with schema theories. In the 

following subsections, a production system architecture and a schema 

architecture are compared and discussed in detail.

3.1.1 Production Systems

The basic claim of production systems is that underlying human cognition 

is a set of condition-action pairs called productions. The condition specifies 

some data patterns, and if elements matching these patterns are in working
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memory, then the production can apply. The action specifies what to do in that 

state. The basic action is to add new data elements to working memory.

Production systems can be traced back to the proposals of Post (1943), 

but Post production systems have little in common with current production 

systems except the notion of condition-action pairs, called productions. Modern 

production systems began with the work of Newell (1973), Newell and Simon 

(1972), and Waterman (1970). Newell and Simon (1972) first proposed 

production systems as one way to formulate information processing theories of 

human problem solving behavior. They initially used the production system, 

PSG, to provide theoretical accounts of human performance on a variety of 

puzzles. Klahr and Wallace (1972) used a production system to model 

children's responses to class-inclusion questions. It soon became apparent 

that production systems were well suited for dealing with issues of development 

(Klahr and Wallace, 1976) and learning (Waterman, 1970). Waterman (1970) 

implemented an adaptive production system to play the game of draw poker.

The program was adaptive in that it automatically changed the productions in its 

rule base. This automatic revision or addition of new rules is viewed as 

learning. Several, different adaptive production systems have been developed 

to model human learning (Anderson et al., 1981; Anzai and Simon, 1979; 

Langley, 1983a; Klahr et al., 1987).

The concept of a production system is vague and hard to define.

Computer scientists would regard production systems as a variant of deductive 

retrieval systems. In computer science there is a more general category, called 

pattern-directed systems (Waterman and Hayes-Roth, 1978), which include 

schema systems as well as production systems. To psychologists, production 

systems could be a formalism to state theories of HIP.
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In its most basic form a production system consists of two interacting data 

structures (working memory and production memory), connected through a 

simple processing cycle (recognize-act-cycle) (Neches et al., 1987). The 

following description of a basic production system is taken from Neches et al. 

(1987). The two interacting data structures are:

1. A working memory having a collection of symbolic data items called 
working memory elements.

2. A production memory consisting of condition-action rules called 
production, whose conditions describe configurations of element that 
might appear in working memory and whose actions specify 
modifications to the contents of working memory.

Production memory and working memory are related through the 

recognize-act-cycle. This consists of three distinct stages:

1. The match process, which finds productions whose conditions match 
against the current state of working memory; the same rule may match 
against the current state of working memory in different ways, and each 
such mapping is called an instantiation.

2. The conflict resolution process, which selects one or more of the 
instantiated productions for applications.

3. The act process, which applies the instantiated actions of the selected 
rules, thus modifying the contents of working memory.

The basic recognize-act process operates in cycles, with one or more 

rules being selected and applied, the new contents of memory leading another

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

28

set of rules to be applied. This cycling continues until no rules are matched or 

until an explicit halt command is encountered.

Suppose there is a production system with one production rule and 

working memory elements as shown in Figure 3.1. The single production and 

working memory elements are represented in the OPS5 programming 

language (Brownston et al, 1985). The rule, FindAncestors, finds and prints the 

ancestors, matching and firing so long as there are still Request elements and 

matching people. The rule should terminate when there are no longer any 

matching people to print as ancestors. An English description of the rule is as 

follows:

IF there is a request to find the ancestor of <myparent> (not nil) 
and there is a person whose name is <myparent>

THEN
remove the Request
and print a message that the <mother-name> and <father-name> of <my- 

parents> are ancestors through <myparent> 
and create two new Requests to find the ancestors of the <mother-name> 

and the <father-name>
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Figure 3.1. An example of a production system

< Production memory >

(p FindAncestors
{(Request Atype ancestor Atarget {<myparents> o  nil}) <request1>) 
(Person Aname <myparents> Amother <mother-name> Afather <father- 

name>)
- - >

(remove <request1>)
(write (crlf) <mother-name> and <father-name> are ancestors via 

<myparents>)
(make Request Atype ancestor Atarget <mother-name>)
(make Request Atype ancestor Atarget <father-name>)

< Working Memory >

1: (Person Aname Penelope Amother Jessica Afather Jeremy)
2: (Person Aname Jessica Amother Mary-Elizabeth Afather Homer)
3: (Person Aname Jeremy Amother Jenny Afather Steven)
4: (Person Aname Steven Amother Loree)
5: (Person Aname Loree Afather Jason)
6: (Person Aname Homer Amother Stephanie)
7: (Request Atype ancestor Atarget Penelope)
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Let us consider what will happen when we start the production system 

running with the two production rules in Figure 3.1. Matching the production 

FindAncestors to working memory elements results in an instantiation with 

variable bindings ((<name> Penelope)(<mother-name> Jessica)(<father- 

name> Jeremy)). Firing the instantiation removes the element (Request Atype 

ancestor Atarget Penelope) and adds two elements to working memory: 8: 

(Request Atype ancestor Atarget Jessica) and 9: (Request Atype ancestor 

Atarget Jeremy).

At the next cycle, there are two instantiations of the rule FindAncestors: 

one matching Jeremy and one matching Jessica. One of the most common 

conflict resolution strategies is recency, in which an instantiation with the most 

recent element in working memory is selected for execution. With the recency 

strategy, the instantiation matching the Request for the ancestors of Jeremy will 

be selected because it matches the most recent working memory element.

The basic production system consists of a working memory, a production 

memory, and conflict resolution. Within this basic framework of a production 

system, there can be many variations. There is a class of production systems 

called adaptive production systems (Waterman, 1975; Neches et al., 1987). 

Adaptive production systems contain a learning mechanism as well as the basic 

components of production systems in order to model human learning and 

development. Another class of production systems is controlled production 

systems which allow control knowledge to be directly represented using a 

control language (Georgeff, 1982). Still another class of production systems 

utilizes meta-level knowledge (Davis and Buchanan, 1984; Clancey, 1983). 

These various types of production systems will be discussed in relation with 

search in Section 3.2.
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3.1.2 A Schema Architecture

Production systems are not the only kind of cognitive architectures since 

generality and computational universality can be achieved in very different 

architectures. The most commonly offered alternatives to production systems 

are the schema architecture (e.g., Minsky, 1975; Schank and Abelson, 1977; 

Rumelhart et al., 1986). The term schema is used more by psychologists and 

cognitive scientists than by Al researchers. The schema architecture view 

intelligence as being based on the associationistic properties of knowledge, i.e., 

the units of knowledge tend to be not elementary facts but cohesive clusters of 

related facts. In Al, terms such as frame and script tend to be used more 

frequently. Partridge (1991) commented that a schema may be more of an 

abstract knowledge representation unit, while frames and scripts tend to be 

more concrete, even if they are not always part of an implemented and working 

system. The term schema will be used in this study to refer to all of forms of 

structured representation, including frames, scripts, and schemata.

The two major components of the schema framework are a working 

memory and a schema memory. The major control cycle of the system involves 

matching schemata to the contents of working memory. A schema can be a 

fancy record structure, such as in frame. A frame is a collection of data items 

that possess some similarity. For example, a chair record might be a collection 

of data items such as color, number of legs, height, etc. In addition the chair 

frame contain links to more general concepts such as furniture. The chair frame 

will also have links to more specialized frames such as an arm-chair frame.

This type of link is called isa, which says that one class is a more general 

version of another. If we want to denote a particular chair, say black chair at my 

office, we can construct a frame and name it, say chair-1. The chair-1 frame
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also can be linked to the chair frame. This type of link is denoted as inst, which 

says that a particular individual is a member (or instance) of some class. If, 

when constructing the chair-1 frame, there is no explicit statement of how many 

legs this particular chair has, then a default value of four in the chair frame can 

be used to fill in the number-of-legs slot of the chair-1 frame. Thus, in general, if 

a schema is partially matched by the information in working memory it will 

create further information to complete this match. It is frequently proposed that 

an instantiated schema like chair-1 can be deposited in schema memory and 

then serve as a new more specific schema. An object is recognized by having 

its schema match the representation in working memory. Thus, recognition is a 

basic force.

This schema structure would lead to a computationally universal system, 

so it is certainly capable of producing humanlike cognition. Moreover, a 

number of empirical phenomena are suggestive of schema operation (Minsky, 

1975). Despite all of these contentions, schema theories have many 

unsatisfactory properties. Anderson (1983) pointed out three problems 

associated with schema theories. First, the schema structure blurs the 

distinction between procedural and declarative knowledge. It has been argued 

that the procedural-declarative distinction is fundamental in many psychology 

studies (Anderson, 1983; Ohlsson and Rees, 1991; Hiebert and Lefevre, 1986). 

in addition Anderson (1983) argued that the distinction is useful in capturing the 

conditional directionality of human thinking. For example, from the fact that the 

light is green one wants to infer that one can walk. Using the schema 

architecture to represent the above fact risks the incorrect inference that the light 

is green from the fact that one is walking. This incorrect inference is possible in 

schema theories because it is possible to instantiate any part and execute any
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other part. In other words, schemata are symmetric. In a production system, on 

the other hand, this asymmetric conditionality can be easily achieved by the 

condition-action productions, that is, one can only go from the instantiation of 

the condition to the execution of the action, not from the action to the condition. 

In general, declarative knowledge is more flexible but inefficient, whereas 

procedural knowledge is less flexible but efficient because it captures efficiency 

in its structure and direction of information flow. Schemata are more like 

declarative and are flexible. However, as mentioned above, although the 

symmetry of schemata may be a source of flexibility, it can lead to problems 

such as incorrect inference.

A second problem is that the units of knowledge in the schema 

architecture tend to be large, thus not allowing the ability to combine information 

in new ways from smaller units. This ability is argued as a hallmark of human 

intelligence (Anderson, 1983). Lastly, the size of schemata also makes it 

difficult to construct effective theories about their acquisition. Technically, it is 

difficult to construct learning mechanisms that can deal with the full range of 

schema complexity. Empirically, it is transparent that learning is gradual and 

does not proceed in schema-sized jumps. This has led schema theorists 

(Rumelhart and Norman, 1981) to propose that we never learn new schemata 

but only modifications of existing ones.

It is possible to model systematic errors with the schema architecture. In 

the schema architecture, errors can arise (a) from fitting the data to the wrong 

schemata, (b) from matching the correct schema too enthusiastically so that 

unmatched portions are filled with best guesses rather than available 

information, and (c) from relying too heavily on active or salient schemata 

(Reason, 1990). Most of these errors can happen because of a property
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associated with schemata theories: a schema only contains information of how 

a particular recollection of information should appear, but has no information of 

what it should not look like. It is intuitively clear that people frequently recognize 

events by identifying that they belong to a generic concept that represents them. 

It may also be the case that people's belief about what a concept does not look 

like do help prevent them committing errors. What is missing in schemata 

theories is such a mechanism.

3.1.3 Why Production Systems?

The production system architecture has been used extensively in 

cognitive science studies (Newell and Simon, 1972; Anderson, 1983; Newell, 

1990; Neches et al., 1987). There are many good reasons for taking the 

production system architecture as a good framework for modeling human 

thinking. Neches et al. (1987) lists six advantages of production system models:

Homogeneity. Production systems represent knowledge in a very 
homogeneous format, with each rule having the same basic structure 
and carrying approximately the same amount of information. This makes 
them much easier to handle than traditional diagram.

Independence. Production rules are relatively independent of each 
other, making it easy to insert new rules or remove old ones. This makes 
them very useful for modeling successive stages in a developmental 
sequence and also makes them attractive for modeling the incremental 
nature of much of human learning.

Parallel/Serial nature. Production systems combine the notion of a 
parallel recognition process with a serial application process; both 
features seem to be characteristic of human cognition.
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Stimulus-response flavor. Production systems inherit many of the 
benefits of stimulus-response theory but few of the limitations, since the 
notions of stimuli and responses have been extended to include internal 
symbol structures.

Goal-driven behavior. Production systems can also be used to model the 
goal-driven character of much of human behavior. However, such 
behavior need not be rigidly enforced; new information from the 
environment can interrupt processing of the current goal.

Modeling memory. The production-system framework offers a viable 
model of long-term memory and its relation to short-term memory, since 
the matching and conflict resolution processes embody principles of 
retrieval and focus of attention.

Anderson (1987) argued for the production system architecture in 

modeling skill acquisition. He observed that production rules are relatively well 

structured, simple and homogeneous, and independent of one another. In 

being well structured, they contrast with theoretical formalisms such as neural 

models (McClelland and Rumelhart, 1986). This helps guarantee that the 

behavior produced by learning production rules will be coherent. In being 

simple and homogeneous, they contrast with many of the proposals for schema 

systems (Schank and Abelson, 1977). Their simplicity and homogeneity make 

it possible to define relatively simple learning mechanisms capable of 

constructing new rules. In being independent, they contrast with a typical 

programming language in which operations are sequentially ordered and 

depend on one another. In contrast, it is possible to add or delete production 

rules individually without greatly perturbing the system. This independence of 

production rules makes it possible to define an incremental learning system that
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grows one production rule at a time and does not involve wholesale changes to 

the cognitive procedures.

Viewed from the perspective of cognitive diagnosis, production systems 

have a better capability of modeling errors at a fine-grained level than do 

schemata theories. In production systems, errors can occur when a production 

fails to fire when it should (errors of omission) or a production fires when it 

should not (errors of commission) (Newell and Simon, 1972; Bundy and Silver, 

1982). An error of commission occur when a production is overly specific and 

does not match even when it should. Such a production system will be 

conservative. It would make no bad moves and would miss some good moves. 

An error of omission would occur when a production is overly general and 

matches situations when it should not. The production system will be a rash 

one, omitting few desirable moves but considering many undesirable ones as 

well. Production systems thus are able to model a broad spectrum of errors, 

from conservative to rash.

3.2 Search and Production Systems

From the perspective of problem space and heuristic search, problem 

solving in production systems can be viewed as attempts to find a path linking 

the initial state to the goal state (Newell and Simon, 1972; Anderson, 1983). 

Actually production systems are computationally universal and hence can be 

used to model any computable procedure, including search. Since problem 

solving is viewed as searching for a path through a problem space from an 

initial state to a goal state, the process of solving the problem can be modeled 

as a production system (Rich, 1983) Three components of a search system (i.e., 

database, operators, and control) are well mapped into three components of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

37

production system (working-memory, production memory, and conflict 

resolution). A database is analogous to a working-memory, operators to 

productions and control to conflict resolution.

As in a search system, a production system needs knowledge to avoid 

the problem of combinatorial explosion. In a production system, knowledge can 

be put in various ways. Knowledge can be domain-dependent or domain- 

independent. Domain-dependent knowledge can be represented in the form of 

conditions of productions (Langley, 1985). This representation will increase 

generative selectivity. Another way of representing domain-dependent 

knowledge uses an augmented mechanism. For example domain-dependent 

knowledge can be represented in state constraints, an augmented mechanism 

to a basic production system, that will increase evaluative selectivity (Ohlsson 

and Rees, 1991). Domain-dependent knowledge also can be represented as 

meta-rules, i.e., rules about rules, that will increase generative selectivity. 

Domain-independent knowledge ranges from as simple as weak-methods 

(Newell, 1969), to conflict-resolution principles (McDermott and Forgy, 1978), 

and to meta-strategies (Clancey, 1983). These various methods are discussed 

below.

Depth-first search starts at the root of the problem-space tree and work 

down the leftmost branch to the end-node before embarking on any other 

branch. Depth-first search does not guarantee to identify the shortest path to 

the solution. In breadth-first search, all of the nodes in the problem-space tree 

at depth 1 are developed first, then all of the nodes at depth 2 are developed 

and so on. Breadth-first search overcomes the problem associated with depth- 

first search and finds the shortest path solution. However, the breadth-first 

search can involve huge overhead: at any stage, all nodes to the left and all
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nodes above the node being developed must be memorized. A more efficient 

method is heuristic search. Contrary to depth-first and breadth-first search, 

heuristic search uses heuristics to improve the quality of the paths that are 

explored. Some heuristics are general in that they are useful in a wide variety 

of problem domains. Control strategies that use general-purpose heuristics are 

often called weak methods. Weak methods include generate and test, hill 

climbing, best-first search, and etc. In production systems, analogous to conflict 

strategies is conflict resolution. McDermott and Forgy (1978) proposed a set of 

domain-independent conflict resolution principles.

General-purpose heuristics usually are coupled with domain-specific, 

special-purpose heuristics to work well in a specific domain. Domain specific 

heuristics can be incorporated into a rule-based search procedure in two major 

ways: in the rules themselves and as a heuristic function (Rich, 1983, p. 71). A 

heuristic function is a function that measures desirability, usually represented as 

numbers, of individual problem states in leading to the goal state. The purpose 

of a heuristic function, therefore, is to guide the search process in the most 

desirable direction, by suggesting which path to follow first when more than one 

is available.

Domain-specific information can be incorporated into rules. One way is 

to devise rules about rules (Davis et al., 1977; Davis and Buchanan, 1984).

Davis et al. (1977) represented certain types of heuristic search strategy 

knowledge as meta-rules. Figure 3.2 shows an example of such meta-rules. 

Such meta-rules, which are invoked as part of the conflict resolution strategy, 

can capture and implement strategic knowledge about a domain. Clancey 

(1983), however, pointed out that meta-rules such as the one above have the 

disadvantage that they mix the domain-dependent and domain-independent
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strategic principles that underlie them. The implicit strategic domain-dependent 

principle which underlies the rule above is that the most frequent causes of a 

disorder should be considered first. The implicit domain-independent principle 

which underlies the rule above is that the most useful rule should be applied 

first. Clancey (1983,1988) argued that different types of knowledge must be 

represented separately and explicitly in order to provide sensible explanations 

to users.

Figure 3.2. An example of meta-rules

If the infection is pelvic abscess and 
there are rules which mention enterobacteriacea in their premises and 
there are rules which mention gram-pos-rods in their premises 

Then there is suggestive evidence (0.4) that the former rules should be applied 
before the latter.

Georgeff (1982) has proposed a controlled production system 

architecture that allows control knowledge to be directly represented using a 

control language. The architecture is based on the explicit specification of 

constraints on rule invocation. In Georgeff's scheme, control knowledge is 

represented by a language, with which we can specify the set of all allowable 

sequences of rules. Georgeff calls this language a "control language." For 

example, suppose that the control language is defined by the following regular 

expression: R1 (R2R3R4)* R5R6R7 where the asterisk indicates repetition of 

the bracketed group. The only allowed rule sequences would be: R1, followed 

by the sequence R2R3R4 repeated an arbitrary number of times, followed by 

the sequence R5R6R7. The restriction imposed by the control language can be
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invoked either when the set of applicable rules is being identified or as part of 

the conflict resolution strategy.

Another way of incorporating domain-specific information to rules is to 

find appropriate conditions for rules and have them make sensible moves. It 

has been argued that finding those conditions is relatively hard and that we can 

use some learning mechanisms to identify those conditions (Langley, 1985).

The class of production systems that use learning mechanisms to gain powerful 

knowledge about the problem which would reduce search efforts are called 

adaptive production systems. Since these systems usually aim at learning 

search strategies, they are also called strategy learning systems (Langley, 

1983a, 1985). Strategy learning systems will be discussed in detail in Chapter 

5.

3.3 Summary

This chapter discusses a production system architecture and argued for a 

production system architecture as a sound basis for PSCD. Three problems of 

schema architectures are discussed along with capabilities of a production 

system architecture. A production system framework is particularly advocated 

due to its superior abilities in modeling errors and learning. These abilities are 

necessary for cognitive diagnosis.
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Chapter 4 THE CONSTRUCTIVIST CONSTRAINT

The final constraint that are built into PSCD is the notion of constructivist. 

The constructivist assumption is a major hypothesis in many cognitive, 

developmental, and educational studies. The constructivist assumption 

differentiates two types of knowledge: procedural knowledge and conceptual 

knowledge (Hiebert and Lefevre, 1986). Procedural knowledge consists of a 

collection of procedures, and conceptual knowledge consists of a set of 

principles. Procedural knowledge represents the type of knowledge executable 

easily, and its execution generates observable performance (Figure 4.1). 

Conceptual knowledge, on the other hand, represents the type of knowledge 

that can not be easily executable, but typically be incorporated or constructed 

into procedures.

Figure 4.1. Principles, procedures, and performances

Principle — ► Procedure — ► Performance

In the constructivist view, observable performance result from executing a 

procedure, which in turn is based on principles of conceptual knowledge. The 

constructivist assumption states that new knowledge is not directly absorbed but 

is learned through the construction or integration of new knowledge with 

previous knowledge (Resnick, 1983). It is also found that people tend to invent 

a procedure from what they know and use that procedure to act on the problem 

at hand (Resnick and Gelman, 1984). Errors are viewed resulting from the use 

of such procedures constructed in hasty.

The notion of constructivism is of importance in this study because it 

identifies the source of errors as the construction process of procedures. This
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chapter describes the constructivist constraint of PSCD in detail. The 

distinction between procedural and conceptual knowledge and the notion of 

constructivism are discussed in Section 4.1. Section 4.2 summarize the 

discussion.

4.1 Principles and Procedures

As stated earlier, the distinction between principles and procedures is 

important in the constructivist assumption. Similar distinctions to the distinction 

of principles and procedures can be found in many other disciplines. For 

example, in linguistics, Chomsky (1967) distinguished between competence 

and performance, and in cognitive development, Piaget (1978) distinguished 

between conceptual understanding and successful action. In cognitive 

psychology, Tulving (1983) distinguished between semantic memory and 

episodic memory; and Anderson (1976) distinguished between declarative and 

procedural knowledge. In the context of mathematics education, VanLehn 

(1986) distinguished between schematic and teleologic knowledge; Hiebert 

and Lefevre (1986) distinguished between conceptual knowledge and 

procedural knowledge; Resnick (1982) talked about semantics and syntax; 

Gelman and Gallistel (1978) distinguished between principles and skills; and 

Baroody and Ginsburg (1986) described differences between meaningful and 

mechanical knowledge.

Hiebert and Lefevre (1986) observed that underlying these various types 

of knowledge was the distinction between skill and understanding, and argued 

that the distinction of conceptual and procedural knowledge drew upon all of 

them. In other words, it is this distinction of skilled procedures and 

understanding of principles that underlies those various types of knowledge.
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According to Hiebert and Lefevre, conceptual knowledge is knowledge that is 

rich in relationships and is thought of as a network in which facts and 

propositions are linked with each other. Hence, a unit of conceptual knowledge 

cannot be an isolated piece of information. It is a part of conceptual knowledge 

only if the holder recognizes its relationship to other pieces of information.

Procedural knowledge, on the other hand, consists of knowledge of 

forms and knowledge of procedures. Knowledge of forms is a familiarity with 

the individual symbols of the system and with the syntactic conventions for 

acceptable configurations of symbols. For example, those who possess 

knowledge of forms would recognize that the expression 3+5 = (?) is 

syntactically acceptable and that 3+ = (?) is not acceptable. Knowledge of 

procedures or rules specifies a predetermined sequence of execution on 

symbolic (e.g., +,-) or nonsymbolic (e.g., concrete objects or mental images) 

objects. Hiebert and Lefevre (1986) suggested that procedure knowledge can 

be characterized as production systems (Newell and Simon, 1972) in that for 

the completion of a task a set of productions or rules are applied to an initial 

state to produce a goal state in a sequential manner. The insight of Hiebert and 

Lefevre (1986) appears to be that the primary relationship in procedural 

knowledge is "after," which is used to sequence subprocedures and 

superprocedures linearly while conceptual knowledge possesses many kinds 

of relationships.

Given these two types of knowledge, an important question becomes 

relationships between conceptual and procedural knowledge. Determining 

relationships between conceptual and procedural knowledge is not simple. A 

persistent problem is that conceptual knowledge is difficult to measure directly
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and consequentially is often inferred through the observation of particular 

procedures for which it presumably is a prerequisite.

Carpenter (1986) proposed three possible relationships. The first 

hypothesis is that advances in procedural knowledge are driven by broad 

advances in conceptual knowledge. The second is that advances in conceptual 

knowledge are neither necessary nor sufficient to account for all advances in 

procedural knowledge. The third hypothesis agrees with the first in that 

advances in procedural skills are linked to conceptual knowledge, but proposes 

that the connections are more limited than suggested by the first.

Supporters of the first approach are Riley et al. (1983) and Briars and 

Larkin (1984). They attributed development to broad advances in conceptual 

knowledge and the linking of procedures to this conceptual knowledge.

Baroody and Ginsburg (1986), however, argued that development of 

procedures used to solve addition and subtraction problems was not always 

governed by the development of conceptual knowledge, but the application of 

certain procedures may lead to conceptual knowledge. Brown and Burton 

(1978), Brown and VanLehn (1982), and VanLehn (1986) also argued for 

nonnecessity of conceptual knowledge for the development of procedural 

knowledge. They argued that children could learn procedures by rote without 

relating them to any conceptual knowledge, and some invention in procedures 

appeared to occur strictly within the context of procedural knowledge. They 

therefore interpreted children's arithmetic errors as resulting from small 

perturbations of syntax of arithmetic without reference to semantics (i.e., 

conceptual understanding of principles) of arithmetic. This perspective, 

however, has undergone harsh criticism. Prominent opponents to this view of 

no relationship of conceptual knowledge to the development of procedural
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knowledge are Resnick (1982, 1983,1984,1989) and Gelman and Meek (1983,

1986).

Gelman and Meek (1983, 1986) argued that some principled 

understanding precedes skilled counting both because the data support this 

view and because if there were no early competence, children might never 

learn to count or do arithmetic. Reviewing relevant research on children's 

knowledge and learning of mathematics, Resnick (1983) and Resnick and 

Gelman (1984) argued that underlying diverse research done by cognitive, 

developmental, and educational psychologists was a so-called constructivist 

assumption about how mathematics was learned.

The constructivist assumption states that knowledge is not directly 

absorbed but is constructed by each individual. In this view, knowledge is no 

longer viewed as a reflection of what has been given from the outside; it is a 

personal construction in which the individual imposes meaning by relating bits 

of knowledge and experience to some organizing schemata. Here schemata 

refers to any interpretive structures brought to the problem (Resnick and 

Gelman, 1984). It appears that the term schemata used by Resnick (1983) 

refers to a higher concept than the terms like schemata theories which are 

meant to include frames, scripts and any other structured object 

representations.

It is viewed that people always seem to try to make sense out of the 

world, and to create rules for acting in it, even given limited information. They 

do not wait until all the information is in before they start to construct a "theory" 

to account for what they have before them. In other words, they invent a 

procedure from what they know and use that procedure to act on the problem at 

hand. It has been shown that implicit in invented procedures is conceptual
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understanding of mathematical principles (Gelman and Meek ,1983, 1986; 

Resnick and Neches, 1984). Resnick (1987) and Resnick and Omanson 

(1987) provided data which suggested that arithmetic errors by children 

resulted from their attempts to invent a procedure which respected all the 

information they did have while ignoring a mathematically important constraint 

that was apparently not learned.

Gelman and Meek (1986), in addition, argued that knowledge of the 

correct principles does not guarantee correct performance. It was hypothesized 

that the performance structures are consequences of competence structures, 

derived by a planning system (Greeno et al.,1984). In their formulation, 

competence has three main knowledge sources: conceptual, procedural, and 

utilizational competence. Conceptual competence is the implicit understanding 

of general principles of the domain. Procedural competence is understanding 

of general principles of action and takes the form of planning heuristics. 

Utilizational competence is understanding of relations between features of a 

task setting and requirements of performance. In this formulation, performance 

depends on procedural and utilizational competence as well as conceptual 

competence. Thus, connections between conceptual and procedural 

knowledge are established gradually and locally to individual problems on a 

piecemeal basis. This conclusion is argued to be consistent with more general 

findings from research on cognitive development (Gelman and Meek, 1986; 

Carpenter, 1986) and also appears to be consistent with recent studies in 

situated cognition (Greeno, 1989). Recently, Smith et al. (1989) built a 

computational mechanism, called COUNTPLAN, based on the work of Greeno 

etal. (1984).
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More recently, Ohlsson and Rees (1991) proposed a cognitive 

mechanism that mediates the facilitation of conceptual knowledge to procedure 

acquisition. This mechanism is based on the assumption that conceptual 

knowledge facilitates procedure learning. Ohlsson (1986) referred to such 

mechanisms that derive procedures from conceptual knowledge as "rational" 

learning to distinguish them from "empirical" learning which constructs 

procedures on the basis of experience. Ohlsson's (1991) rational learning 

mechanism consists of two main components: a representation for conceptual 

understanding and computational machinery that maps that understanding onto 

a procedure. Ohlsson and Rees (1991) proposed a novel knowledge 

representation, called state constraints to represent principled understanding. 

Since the computational framework of the state constraint formalism is heuristic 

search, the state constraint formalism is of the most relevance to this study. In 

the state constraint formalism, principles are represented as state constraints, 

and those state constraints act as constraints on possible states of affairs during 

the search. The choice of the state constraint theory for PSCD in this study is 

due to the heuristic search and production system constraint s. Clarity and 

parsimony of the state constraint theory also merits attention in this choice 

process.

4.2 Summary

In this chapter, it is argued that the distinction between principled 

understanding and procedural knowledge is fundamental in many distinctions 

of knowledge found in many other disciplines. Of more importance is the 

relationship between two types of knowledge. It is argued that new knowledge . 

of procedures is not directly absorbed but is learned through the construction
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process. Understanding of domain principles aids the construction process. 

Thus, errors are viewed as arising from using incorrect procedures that are 

constructed with incomplete understanding. Incorrect procedures are not just 

variants of correct procedures but have roots in incomplete understanding of 

domain principles. Errors, procedures, and the role of domain principles in 

procedure construction are discussed in detail in the next chapter.
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Chapter 5 METHODOLOGIES OF COGNITIVE DIAGNOSIS

In Chapters 2,3, and 4, three constraints that are incorporated into PSCD 

are described. This chapter reviews different methodologies of cognitive 

diagnosis and describes relationship with three constraints embedded in 

PSCD. Cognitive diagnosis refers to the process of inferring a person's 

cognitive state from his performance (Ohlsson, 1986a; Wenger, 1987). The task 

of cognitive diagnosis usually involves the construction of a student model 

(Figure 5.1). The purpose of the construction is to discover which knowledge, 

correct or incorrect, has been used to produce behavior, and which relevant 

knowledge has been overlooked. The process of discovering differences of a 

student model from an expert model is called differential modeling (Wilkins et 

al., 1988). Differential modeling typically produces error descriptions. Error 

descriptions provide the basis for the potential remedial instruction. On the 

basis of this belief, several computerized diagnostic methods for identifying the 

errors of individual learners have appeared in various domains: arithmetic 

(Burton, 1982; Ohlsson and Langley, 1988), algebra (Sleeman, 1982), 

elementary programming (Johnson, 1986), and LISP programming (Anderson 

and Reiser, 1985; Anderson et al., 1984).

Recent studies in ITS progress toward building a program that can 

understand what the student is doing (Burns et al., 1991; Clancey, 1987b;

Mandl and Lesgold, 1988; Poison and Richardson, 1988; Sleeman and Brown,

1982). This progress was the result of realization that there was no need to 

consider strategies for teaching if we did not understand what the student was 

doing (Clancey, 1987). It became the central idea to model the student. This 

realization actually called for a detailed model of the student, that is a fine-
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Figure 5.1. Cognitive diagnosis
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grained description of the student than such a coarse-grained model as a 

performance measure. An assumption is that tutoring based on on fine

grained student models will be more effective than tutoring based on coarse

grained models. Although this assumption has not been attempted to check 

(VanLehn, 1988), it is widely accepted by educational researchers (Self, 1974; 

1978; Ohlsson, 1986a; Resnick, 1984) and in recent ITS studies (Clancey, 

1987; Anderson, 1988; Johnson, 1986). In Chapter 1, cognitive simulation is 

advocated as a better approach in modeling a decision maker or student 

because of its ability to produce detailed models of a decision maker. ITS 

studies also defend the need of a fine-grained student model.

This chapter discusses different methods of cognitive diagnosis. A 

cognitive diagnosis method can be understood as consisting of two processes: 

first inferring a student model from performances traces and second producing 

error descriptions by comparing a student model and an expert model. ITS 

literature suggest two different methodologies for the inference of a student 

model: machine learning and planning. In this study, the focus is placed on 

studies incorporating models of learning into cognitive diagnosis. Underlying 

the focus is the belief that a model of cognitive diagnosis would be more useful 

if it were built on learning theories. This belief is in line with studies in 

development and education, for instance by Glaser and Bassok (1989). It is 

argued that a theory of instruction must specify itself in terms of three 

dimensions: (a) the knowledge state of competent performances ; (b) the initial 

knowledge state of the learner; and (c) the process of learning, the transition 

from initial state to desired state that can be accomplished in instructional 

settings (Glaser and Bassok, 1989). The insight of Glaser and Bassok is that it 

is necessary to consider the above three dimensions in order to determine the
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best remedial instruction out of possible instructions. What it implies in the 

context of ITS is that the tutoring model must have information on these three 

dimensions. In other words, the model of cognitive diagnosis must generate 

such necessary information with a student model and a expert model. Thus, 

various cognitive diagnosis methodologies are discussed in terms of these 

three dimensions.

Section 5.1 reviews several studies concerning descriptions of in 

knowledge states between an expert and a student. Three approaches are 

described, and among them the bug part approach which reconstruct buggy 

rules is favored as an appropriate approach for this study (5.1.1). Planning and 

learning are two methodologies for reconstructing buggy rules, and the learning 

approach is advocated (5.1.2). Section 5.2 reviews relevant learning theories. 

Learning can be viewed as strategy learning in production system frameworks 

(5.2.1). Two types of techniques frequently used in strategy learning studies are 

generalization and discrimination (5.2.2). It is shown that discrimination 

learning has potential to overcome some of disadvantages of generalization 

learning (5.2.3). Empirical learning has been the dominant paradigm in 

machine learning, but it is argued that empirical learning models are not 

appropriate for the purpose of cognitive diagnosis (5.3). It is argued that 

domain principles are important in procedure construction (5.4), and rational 

learning models are favored for the cognitive diagnosis purpose (5.5). Finally 

the summary of this chapter is provided in Section 5.6.

5.1 Differences between Expert and Student

Cognitive diagnosis can differ in terms of a knowledge representation 

scheme employed to express knowledge states of a competent expert and a
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novice student. We may think of two different representation schemes, one for a 

competent expert and the other for a novice student. However, most cognitive 

diagnosis studies assume one representation primarily because of efficiency 

and economy (VanLehn, 1988). Typically one representational language is 

used to represent knowledge states ranging from the initial to the competence. 

Novices are usually viewed lacking some knowledge and/or keeping incorrect 

knowledge as compared to experts. Therefore, a student model can be more or 

less a subset of a expert model and/or a expert model with incorrect knowledge. 

Literature shows three types of approaches: the overlay approach, the bug 

library approach, and the bug part approach (Wenger, 1987; VanLehn, 1988).

In the overlay approach, a cognitive diagnosis model is concerned with 

only missing knowledge (Clancey, 1987). Conceptually, a student model is a 

proper subset of a expert model. A student model consists of the expert model 

plus a list of items that are missing. In the bug library approach, both incorrect 

knowledge and missing knowledge are represented (Anderson et al., 1990; 

Sleeman, 1984). A student model here consists of an expert model plus a 

library of predefined misconceptions and missing conceptions. The members of 

this library are called bugs. In the bug part library, ITSs construct bugs from a 

library of bug parts. Bugs are constructed during diagnosis rather than being 

predefined. For instance, each bug constructed by the ACM system (Langley 

and Ohlsson, 1984) is a production rule which consists of conditions, that are 

learned during diagnosis, and single action. The action and the predicates 

used for inducing conditions are drawn from the defined representation 

language.

Among three approaches, the overlay approach is the most frequently 

used in representing student models. The overlay approach, however, is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

54

able to model incorrect knowledge which was found to account for many of the 

errors that have been shown in children's subtraction (Matz, 1982; Brown and 

VanLehn, 1980; Young and O'Shea, 1981; Stevens et al., 1982). The bug 

library approach could be better in accounting for errors because it can model 

errors resulting from incorrect knowledge as well as those from missing 

knowledge. The biggest hurdle in the bug library approach is in assembling the 

library (VanLehn, 1988).. The library should be nearly complete. If a student has 

a bug that is not in the library, then the student model will try to fit the behavior 

with some combination of other bugs. It may totally misdiagnose the student's 

misconceptions. It is the bug part approach which can account the largest set of 

errors. This is so because bugs are constructed rather than predefined. Bugs 

can be constructed through a planning technique (Kowalski and VanLehn,

1988; VanLehn and Garlick, 1987) or through a machine learning technique 

(Ohlsson and Langley, 1988; Langley et al., 1990).

5.1.1 Generative Theories of Bugs

So far discussed are how much each approach is able to account for 

errors. What is obviously missing in the discussion is why errors occur in the 

first place, in other words explaining the cause of errors. It is useful to 

distinguish a generative theory, bugs, and systematic errors (Figure 5.2).
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Figure 5.2. Generative theory of bugs (Brown and VanLehn, 1980, p. 
380)

Generatiue Theory of Bugs

,su
Bugs

Systematic Errors

Errors are said to be systematic if there exists a procedure that produces 

his erroneous answers. Systematic errors occur from using erroneous 

variations of a correct procedure for that skill. These erroneous variations of a 

procedure are called bugs or mal-rules. Bugs are viewed as complex, 

intentional actions reflecting mistaken beliefs about the skill, and are 

differentiated from slips where the subject did something which they did not 

intend to do. Bugs can be collected empirically from examining protocols and 

added to a correct procedure to diagnose students' behavior (Brown and 

Burton, 1978; Sleeman, 1984). Or bugs can be reconstructed via a 

computational mechanism (Brown and VanLehn, 1980; Young and O'Shea, 

1981). Brown and VanLehn posited that there would be a small set of 

principles and associated processes that could transform a correct procedural 

skill into all of its buggy variants. Thus, Brown and VanLehn hypothesized that 

all observed errors could be explained by buggy variants which in turn could be 

generated by applying one or more hypothesized processes to a correct 

procedural skill. Hence those principles and processes are called a generative

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

56

theory of bugs. In this study, three generative mechanisms are reviewed: repair 

(Brown and VanLehn, 1980), deletion (Young and O'Shea, 1981), and 

misgeneralization (Matz, 1982; Sleeman, 1984).

Brown and VanLehn (1980) proposed a generative theory of bugs, called 

repair theory, which generated all the known or expected bugs for a particular 

skill, in this case subtraction. According to this approach, bugs originate mostly 

in mislearning and forgetting: that is, in the student's failure to follow an 

instructional sequence or in the teacher's failure to provide an unambiguous 

and organized set of instructive examples. The essential idea of the repair 

theory is that some fault in a student's core procedure for subtraction leads to 

impasses, which are problem states from which the core procedure is unable to 

proceed. When this happens a local problem solver is brought into play to 

devise a repair to bridge to a new problem state from which the knowledge 

base can take over. The observed bugs thus arise from the cross product of the 

set of possible impasses with the set of possible repairs.

Another generative mechanism that explains the source of errors is 

deletion (Young and O'Shea, 1981). Similar to Brown and VanLehn (1980), 

Young and O'Shea (1981) argued that many errors in children's subtraction 

resulted from the use of incorrect strategies rather than from the incorrect recall 

of number facts. They used a production system to represent the procedure for 

correct subtraction and argued that many different kinds of errors could be 

accounted for mainly by the omission of various rules from the set of correct 

productions.

Matz (1982) and Sleeman (1984) proposed misgeneralization as the 

main source of errors. Matz (1982) argued that errors could be viewed as the 

result of a systematic adaptation of previously acquired knowledge using a
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small number of extrapolation technique. Sleeman (1984) similarly argued that 

many of the bugs encountered in the subtraction domain could be accounted for 

by the process of misgeneralization. As contrary to repair theory which 

hypothesizes that bugs occur because the student has not encountered the 

appropriate teaching necessary to perform the task, misgeneralization assumes 

that the student actively tries to infer procedure with his previous knowledge of 

the domain and errors occur because the procedure cannot be correct due to 

some missing knowledge. In this approach, students are viewed active theory 

builders. This view complies with the constructive view developed in cognitive 

development and education studies (see Section 4.3).

All these three approaches attempt to explain why errors occur from 

different perspectives, but they all posit the existence of bugs that cause errors. 

Studies under this presumption are therefore often called bug studies. The 

whole enterprise of bug studies share two assumptions (Payne and Squibb, 

1990). One is that errors can be classified as slips or mistakes (see Section 7.3 

for more discussion about slips and mistakes). Slips occur when one fails to 

execute as intended. Mistakes occur when one formulates the intention 

incorrectly. Slips are often called execution errors, and mistakes are called 

planning errors (Kowalski and VanLehn, 1988). Bug studies focus on mistakes. 

The other is that bugs arise in the context of purely syntactic manipulations of 

symbols without considering any semantic rationalization of these 

manipulations. A basic insight of bug studies is that children often used 

systematic routines that produce wrong answers and those systematic routines 

involve in mainly syntactical manipulations. A challenge to this assumption is 

the view that bugs can be seen as corresponding to violations of specific 

principles (Resnick, 1982; Resnick, 1983; Resnick and Omanson, 1987;
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Langley et al., 1990; Ohlsson and Rees, 1991). In the latter perspective, bugs 

are not caused by faulty syntactic manipulations but by faulty understanding of 

domain principles. Thus, in this perspective, a generative theory of bugs is not 

like repair, deletion, or misgeneralization but must contain a process of 

semantic rationalization.

There are two computational mechanisms in ITS literature, that attempted 

to model a process of semantic rationalization. Smith et al. (1989) built a 

computational model called COUNTPLAN which generated procedures through 

a planning process. Another computational model, called HS, was proposed by 

Ohlsson and Rees (1991). HS used a learning process to generate 

procedures. It appears that planning and learning are two main alternatives in 

cognitive diagnosis research attempting to build a generative theory of bugs.

5.1.2 Reconstructing Buggy Rules: Learning or Planning

Generative mechanisms have been advocated because they explain in 

principle ways why errors occur, and also because they are able to model 

complex errorful behavior (Young and O'Shea, 1981; Sleeman, 1984). All 

three generative mechanisms explain, from different perspectives, what causes 

errors. Repair theory assumes a repair mechanism which patches a 

constrained procedure at an impasse and explains errors with such patched 

procedure. Similarly the deletion mechanism explains errors with a partial set 

of rules, and misgeneralization is proposed as the source of errors, although 

Sleeman (1984) just proposed the idea of misgeneralization for explaining 

errors and did not work out any detailed mechanism. All these mechanisms 

assumes a priori some kinds of computational mechanisms to explain 

empirically observed errors. On the contrary, it is possible to reconstruct buggy
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rules from problem solving traces. There are two alternative approaches 

attempting to reconstruct bugs from problem solving traces.

One approach uses a learning mechanism to induce a set of rules that 

constitutes a student model. For example Sleeman's (1984) misgeneralization 

assumes a type of generalization learning. Langley and Ohlsson (1984) 

applied discrimination learning to the construction of ACM. ACM constructs 

cognitive models from error data in the domain of subtraction problems.

Recently Ohlsson and Rees (1991) proposed a computational mechanism of 

rational learning which can be easily extensible to the task of cognitive 

diagnosis. Learning mechanisms are discussed in detail in Section 5.2.

The other approach that reconstructs buggy rules from problem solving 

traces uses a planning technique. Intuitively, a plan is a program of action, or 

sequence of steps, designed to achieve a desired goal. Problem solving of 

students can be viewed as executing a set of actions that are intended to 

contribute to the overall goal. Based on this view, it can be further said that a 

trace of goals and subgoals that a student used in generating a sequence of 

actions provides an appropriate structure for determining the correctness of a 

solution. Plan recognition is the inverse of planning. A planner uses facts 

about its problem area to produce a plan that achieves its goal. A plan 

recognizer starts with a sequence of actions, reconstructs the problem solver's 

plan, and thereby infers the underlying beliefs. The object of plan recognition is 

to infer a plan tree with given leaves. The leaves of the tree are primitive 

actions, the nonleaf nodes in the tree are subgoals, and the root node of the 

tree is the overall goal. Links between nodes in the tree represent goal-subgoal 

relationships. Such a tree is called a plan.
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Genesereth (1982) proposed an idea that plans can be viewed as 

dependency graphs. Dependency graphs explain how a set of actions achieve 

its goal in terms of the problem solver's beliefs about the problem domain. He 

further talked about the usefulness of resulting plans in identifying student's 

misconception and in offering remediation in context. VanLehn (1987) viewed 

that plan recognition is computationally similar to parsing a string with a context- 

free grammar. He looked to the parse tree as an explanation for the action 

sequence. When the parser could not find any tree, his system, called SIERRA, 

invented one or more new procedures to complete a parse. Thus he called 

SIERRA'S algorithms as learning by completing explanations. VanLehn and 

Garlick (1987) built CIRRUS which used parsing for plan recognition. Kowalski 

and VanLehn (1988) used CIRRUS to induce student models from protocol 

data. Recently VanLehn et al. (1989) showed that minor perturbations of goal 

selection strategies could account for a great deal of variance in the strategies 

of subtraction students. A production system model in VanLehn et al. (1989) 

differentiated two types of productions: preferences, which contains information 

about goal selection, and primitive actions, which contains operator selection 

information. They showed that small perturbations on preference productions 

could successfully reproduce protocols of eight nonstandard students.

Another model which utilizes the planning concept is COUNTPLAN 

(Smith et al., 1989). COUNTPLAN is based on the work of Greeno et al. (1984) 

who formally specified numerical competence as consisting of conceptual, 

procedural and utilizational competence. Conceptual competence is the 

implicit understanding of general principles of the domain. Procedural 

competence is understanding of general principles of action and takes the form 

of planning heuristics. Utilizational competence is understanding of relations
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between features of a task setting and requirements of performance. It is 

assumed that the performance structures are consequences of competence 

structures, derived by a planning system. The formalism used for planning is 

planning nets (VanLehn and Brown, 1980). "Planning net" is a formalism for the 

particular representation of teleologic semantics of a procedure. Teleologic 

semantics refers to knowledge about the purposes of each of its parts and how 

they fit together. A planning net provide a formal characterization of how 

constraints and actions in the domain are integrated with the help of planning 

heuristics into a valid plan. Greeno et al. (1984) used planning nets to derive 

plans from schematic representations of domain-specific and general 

procedural principles, three types of competence. Actually COUNTPLAN is a 

generative theory of performance, not a theory of cognitive diagnosis. It is not 

concerned with inferring a student model from problem solving traces, although 

Smith et al. (1989) suggested that such diagnosis would be possible.

Both planning and learning approaches appear to be promising. This 

study follows the learning approach because, in addition to cognitive diagnosis, 

learning is the central problem in many other applications, for example in 

automating protocol analysis (VanLehn and Garlick, 1987), psychological 

modeling of skill acquisition (Singley and Anderson, 1989), and knowledge 

acquisition problem for expert systems (Langley and Simon, 1981). In addition 

it is argued that learning techniques have more cognitive fidelity than planning 

techniques (Ohlsson and Rees, 1991). The learning approach also has been 

advocated by many researchers (Anderson, 1983; Langley et al., 1990; Newell, 

1990; Ohlsson and Rees, 1991).
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5.2 Learning Theories

Learning theories specify the function and form by which novice 

knowledge structure is transformed to expert knowledge structure. It is said that 

one important dimension for understanding cognitive diagnosis methods is 

learning theories to be assumed (VanLehn, 1988). Furthermore, assuming a 

certain learning theory often dictates certain types of knowledge representation 

(Charniak and McDermott, 1985). Recent extraordinary growth in artificial 

intelligence and its application has produced a remarkable expansion in 

machine learning as well (Michalski et al., 1983,1986; Kodratoff and Michalski, 

1990; Kodratoff, 1986; Mitchell etal., 1986; Forsyth and Rada, 1986).

Researchers have proposed various categories for classifying learning 

theories. Learning theories are often categorized by learning strategies, e.g., 

learning by being told, learning by doing, failure-driven learning, learning by 

discovery, and many others (Charniak and McDermott, 1985; Michalski et al., 

1986; Cohen and Feigenbaum, 1982). Bundy et al. (1985) classified learning 

theories on the basis of algorithms. This study uses a broader classification 

scheme similar to Draper's categorization (1987). The scheme differentiates 

three categories: rote learning, empirical learning, and rational learning.

One can learn without much knowledge. This learning is called "rote 

learning" (Draper, 1987; Cohen and Feigenbaum, 1982). In rote learning, the 

learning system does not need to do any processing to interpret the information 

supplied by the environment. All it must do is memorize the incoming 

information for later use. For example, memorizing a fact that "Chicago is 100 

miles east from Lincoln" is a typical rote learning and results in adding a factual 

assertion into memory. Although rote learning may pose some psychological
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interesting issues, it may not be called learning after all. Rote learning will not 

be discussed much further.

Empirical learning refers to the induction of rules with the help of domain- 

independent, syntactic computations. Empirical learning is often called 

inductive learning because it involves in the induction of rules. The classic 

name for empirical learning is concept learning (Winston, 1984). Under the 

name of concept learning, there is a wide class of research efforts (Mitchell,

1977; Anderson, 1976,1983; Laird et al., 1986; Anzai and Simon, 1979;

Langley, 1983a; VanLehn, 1982). Section 4.1.1 reviews some of concept 

learning models relevant to the study, and discusses concepts underlying the 

methodologies.

Mechanisms that infer new rules with the help of knowledge of the 

relevant domain is called knowledge-based or "rational" learning mechanisms, 

and are distinguished from empirical learning mechanisms (Ohlsson, 1986). 

Although there can be many variations, two prominent theories In rational 

learning are explanation-based learning (Minton, 1988) and the state constraint 

theory (Ohlsson and Rees, 1991). These learning mechanisms are discussed in 

Section 4.1.2.

Since a learning system can only exist in the context of some 

performance framework (Newell and Simon, 1973; Langley, 1983b), it is 

important what framework a learning system resides in. This study uses 

production systems framework as the performance framework like many others 

(Newell and Simon, 1972; Anderson, 1983; Newell, 1990; Langley, 1983b; 

VanLehn, 1990; Ohlsson and Rees, 1991; Minton, 1988), and therefore learning 

systems are described within the production systems framework. Learning in 

the production systems framework can be viewed as the creation of new
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condition-action rules or productions. The appropriate actions of these new 

rules can often be determined rather easily, since analogous actions can be 

observed in the environment. However, the conditions under which these 

actions should be applied is seldom so obvious (Langley, 1987). Thus, much of 

studies in machine learning has focused on discovering heuristically useful 

conditions on productions for solving problems (Langley et al., 1980; Langley,

1983). The problem of condition finding can be approached from a number of 

perspectives. The categorization of learning theories employed in this study 

differentiates between the empirical learning approach and the rational learning 

approach. Since it is necessary to have a performance system within which a 

learning system operates, the next section describes learning in the context of 

heuristic search and production system architectures.

5.2.1 Strategy Learning Systems

From the perspective of search, learning can be viewed as the process 

by which general but weak methods are transformed into powerful, domain- 

specific search heuristics. The set of works which focus on this kind of 

transitions is called "strategy learning" or "learning search control knowledge" 

(Langley et al., 1980; Necheset al., 1987; Minton, 1988).

It is argued that three components are necessary for a strategy learning 

system to improve its search strategies with experience (Langley, 1985). First, 

such a system must be able to search, so that it can generate behaviors upon 

which to base its learning. Second, the system must be able to distinguish 

desirable from undesirable behaviors, and to determine the components of the 

system that were responsible for those behaviors. Finally, the system must able 

to use this knowledge to modify its search strategies, so that behavior improves
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over time. Since search is a performance framework, the other two issues are 

more relevant to learning studies. The part of program which identifies faulty 

knowledge or rules is called critics, and the part of program which, given the 

information about desirable and undesirable behaviors, revises faulty 

knowledge or rules is called modifiers (Langley, 1985; Bundy et al., 1985). The 

former problem of identifying faulty rules is generally known as credit 

assignment problem (Langley, 1985; VanLehn, 1989). The latter problem of 

revising rules is called revision problem (Ohlsson and Rees, 1991)

Since so much of Al research has revolved around the notion of search, 

search is the best understood. Many alternative search strategies have been 

explored, ranging from very general but weak methods, like depth-first and 

breadth-first search, to much more powerful methods that incorporate 

knowledge about specific domains. Weak methods are general because they 

make minimal assumptions about the problem. They provide a way to decide 

what to do when one does not know what to do. Learning is viewed as the 

transition from weak, general methods to specific, powerful methods. With 

experience, one can gain knowledge which may aid him or her to decide 

precisely what to do without involving in costly search. It is this aspect that 

strategy learning systems try to model. A strategy learning system starts with 

some weak search scheme that can be applied to many different domains and 

improves its search scheme with experience.

Distinguishing desirable from undesirable behaviors and determining the 

parts of the system responsible for those behaviors has been called the credit 

assignment problem. One option for the credit assignment problem is to solve a 

given problem with legal operators given by searching the problem space.

Once the solution paths have been discovered, they can be used to assign
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credit and blame. Moves leading to states on the solution path are desirable, 

since they led to a solution while moves going off the path are undesirable, 

since they led elsewhere. This approach is called learning from solution paths 

(Langley, 1985; Sleeman et al., 1982). This approach is very general and can 

be used to assign blame and credit to any problem, but when search spaces 

are so large that other route must be taken, other credit assignment heuristics 

that do not require complete solution paths must be employed to enable 

learning to occur while the problem is being solved. These heuristics enable 

the search process to be directed enough to reach the goal state. These 

heuristics open the way to learning while doing (Anzai and Simon, 1979). 

Langley (1985) documents this type of heuristics, which include noting loop 

moves, noting longer paths, and illegal states.

A strategy learning system can alter its search behavior by either 

discovering numerical evaluation function or by modifying heuristics with 

symbolic conditions to direct search. A learning system which discovers 

evaluation functions uses various techniques to generate an evaluation function 

from a solution that has been found. While such techniques are useful in 

domains where numeric evaluation functions are appropriate, other methods 

must be used to acquire heuristics that can only be stated in symbolic terms.

One technique for learning symbolic conditions begins with very specific rules 

and generalizes as more information is gathered (Winston, 1984). An 

alternative approach starts with an overly general rule and generates more 

specific versions through a process of discrimination (Langley, 1982). Yet 

another approach incorporates aspects of both the generalization and 

discrimination methods (Mitchell, 1977).
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5.2.2 Generalization and Discrimination Learning

Two types of techniques have been dominating research on condition 

finding: generalization and discrimination. In generalization learning, the 

learning system initializes the first positive instance as the initial rule. Here the 

rule represents a hypothesis of the concept to be learned. When a new positive 

instance is encountered, the learning system compares the current hypothesis 

with the new positive instance and finds the common features shared by the two 

structures. Then the hypothesis is redefined in terms of this common structure.

In the case of the complex representation being used for the description of 

examples, it is possible to have more than one set of common structure and 

thereby have more than one generalization. Possible generalizations 

constitutes a rule space. Given the rule space, the learning system must carry 

out some type of search through the space of possible rules; a depth-first search 

(Winston, 1984) or a breadth-first search (Hayes-Roth and McDermott, 1976). 

The search can be aided with heuristics which suggest the most probable 

generalization out of possible generalizations (Winston, 1970). The learning 

system also can search the instance space to select those most likely to provide 

new information. Therefore, a learning system can be viewed as performing 

search through dual spaces: an instance space and a rule space (Simon and 

Lea, 1990).

When a depth-first search is used to search through the rule space 

(Winston, 1984), the learning system needs to have the ability to backtrack 

through this space because there is no guarantee that the learning system 

always select the right generalization. The learning system also needs to retain 

positive instances of a concept as well as negative instances in order to be able, 

to backtrack. In the case of a breadth-first search being used (Hayes-Roth and
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McDermott, 1976), the learning system needs never backtrack and does not 

need to retain positive instances. However, negative instances must still be 

retained for the case when they are to be used in rejecting overly general rules.

Mitchell (1977) proposed a version space technique which has done 

away with the need for negative information as well. A version space is simply 

a way of representing the space of all concept descriptions consistent with the 

training instances seen so far. Since a version space keeps track of all versions 

that are permitted by the data so far, the learning system does not need to 

backtrack and also does not need to retain negative instances. His version 

space technique maintains a set of maximally general versions (MGVs) and a 

set of maximally specific versions (MSVs). The set of MGVs contains maximally 

general patterns for legal rules (or operators). The set of MSVs contains 

maximally specific patterns for the rules. For a legal rule R, a maximally 

general version may say that R applies at all times whereas a maximally 

specific version may say that R applies only at a very particular situation. The 

truth lies in between. A particular algorithm, known as the candidate elimination 

algorithm, is used to manipulate the version space which is no more than a data 

structure. The algorithm begins by initializing the MGVs to the most general 

concept descriptions and the MSVs to the most specific concept descriptions 

available in the pattern-description language. As new positive instances are 

encountered, the specific boundary is made more general. As new negative 

instances of a rule are encountered, the general boundary is made more 

specific. Moving the specific boundary in the direction of greater generality can 

be considered as a breadth-first search from specific patterns to more general 

ones. The objective of this search is to compute a new boundary set which is 

sufficiently general so that it does not rule out a newly encountered positive
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instance. Correspondingly, moving the general boundary in the direction of 

greater specificity can be considered as a breadth-first search from general 

patterns to more specific ones. The objective of this search is to compute a new 

boundary set which is just specific enough to rule out a newly encountered 

negative instance. Eventually the. boundaries meet, and the process converges 

on one or more patterns that lie in the middle. Whether this pattern is actually 

correct depends on how well pattern-description language fits the domain.

The basic approach of generalization has a number of drawbacks that 

limit its value (Langley, 1987; Charniak and McDermott, 1985). First, because 

they examine features that are held in common between examples, 

generalization-based strategies do not lend themselves to the discovery of 

disjunctive concepts. When confronted with positive examples of disjunctive 

rules, these systems overgeneralize and cannot recover. Mitchell's (1977) 

version space approach is also subject to this drawback because it also finds 

features held in common by all positive instances. Second, generalization- 

based learning systems have difficulty handling noisy data. This also results 

from their dependence on finding commonalities in examples. If even one of 

these examples is faulty, then the entire learning sequence is thrown into 

confusion. Finally any program that learns through generalization would have 

serious difficulty responding to an environment in which the conditions 

predicting an event actually changed over time. If a tutor decides to modify the 

definition of a concept in the middle of a training session, a system that 

searched for common features would rapidly become very confused. It is 

argued that the ability to recover gradually from changes in its environment 

would be a definite advantage in real-world-settings. Langley (1983a, 1985,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

70

1987) proposed discrimination learning as an alternative which has the 

potential to overcome these difficulties.

5.2.3 A General Theory of Discrimination Learning

Langley (1983a, 1985, 1987) proposed discrimination learning as a 

general learning mechanism. Discrimination learning is a type of empirical 

learning in that a learner attempts to learn from its past problem solving 

experience. Discrimination learning is a type of strategy learning in that 

learning occurs in the process by which general but weak methods are 

transformed into powerful, domain-specific search heuristics.

Discrimination learning starts with very general rules containing few 

conditions, and add more conditions as the need arises. Rather than looking for 

features held in common by all positive instances, these methods search for 

differences between positive and negative instances. These differences are 

then used to further specify the conditions under which a concept or rule should 

apply. The goal of discrimination learning is to compute more conservative 

versions of the production with additional conditions that will prevent their 

applications in the undesired case. Langley (1987) demonstrated the 

generality of discrimination learning by applying it to strategy learning tasks as 

well as concept learning tasks.

In concept learning tasks, Langley's program, called SAGE (Langley, 

1983a), starts with an overly general rule which would predict that all examples 

are positive instances of a concept. Once an example is available, the program 

makes a prediction, and compares the prediction with the correct answer 

provided by a tutor. When the program correctly predicts a positive instance, it 

stores the instance for being used in the case of recovering from errors of
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commission. An error of commission occur when the program predicts an 

example as a positive instance while it is a negative instance. There is another 

type of errors, called errors of omission. Suppose the program predicts it as a 

negative instance of a concept while the example is actually a positive instance 

of a concept, an error of omission has occurred. When an error of omission 

occur, the program designates a new very general rule that predicts any 

situation to be a positive instance.

When an error of commission has occurred, the program evokes the 

discrimination process in an effort to generate more conservative versions of the 

responsible rule with additional conditions that will prevent their application in 

the undesired case. The discrimination process retrieves the most recent 

positive instance of the rule that make a wrong prediction and compares it with 

the current negative instance with the goal of finding differences between the 

two. The former instance is called a selection context, and the latter is called a 

rejection context (Bundy et al., 1985; Langley, 1987). For each difference, the 

program creates a new rule which is identical with the old rule but with a 

difference as an additional condition. When an differential element is in a 

selection context and not in a rejection context, the element is just added to a 

new rule as a extra condition. On the other hand, when an differential element 

is in a rejection context and not in a selection context, the element is negated 

and then added to a new rule. The added condition ensures that the new rule 

would still be true when the original rule correctly applied, but would not be true 

in the undesired situation. Langley (1983a) further showed that the 

discrimination mechanism also gives the program the capability of learning 

disjunctive concepts, which causes a trouble in generalization methods. It is 

argued that learning disjunctive concepts is possible in the discrimination
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technique because the program focuses on a single positive and a single 

negative instance at a time. Langley also argued that the strengthening 

process, when it works together with the discrimination process, is particularly 

effective in handling noise, be it positive or negative. The strengthening 

process weakens of' strengthens the measure of success attached to each rule 

whenever it make a correct prediction or incorrect prediction respectively.

An example may clarify the discussion. Suppose a concept to be 

learned is "large or blue" and the program initial is provided an overly general 

rule that has no condition. Presented a positive instance "large and blue", the 

program predict it correctly as a positive instance and stores the instance in the 

memory. Encountering a negative instance "small and blue", the program 

which has only an initial rule predict it incorrectly as a positive instance and an 

error of commission has occurred. Given the error of commission, the program 

evokes the discrimination mechanism which retrieve the most recent positive 

instance, that is "large and blue" and compares it with the current negative 

instance "small and blue" to find one difference, "large" which is in the selection 

context but not in the rejection context. The program then creates a rule with the 

condition (large). Given yet another negative instance "small and red", the 

program, which has now an initial rule and a rule with a condition (large), 

predicts the instance as a positive instance, because even by this time the initial 

rule may have the largest strengthening value. The discrimination process is 

evoked again and create a rule with a condition {red). Through these 

processes, a disjunctive concept can be learned and each disjunct is 

represented as a separate rule.

The discrimination mechanism applied to strategy learning tasks is In 

principle same as the one described in concept learning tasks, except a few
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complications (Langley, 1985). First the program solves a given problem with 

legal rules by the depth-first or breadth-first search to find solution paths and 

alternative paths. Using several heuristics (Langley, 1985, p. 234-235), the 

program identifies desirable moves from undesirable moves . Comparing the 

good move to the bad move, the discrimination mechanism generates variants 

of rules. Since in strategy learning there can be a number of legal rules or 

operators with several variables, a selection and a rejection contexts keeps 

variable bindings as well as all elements in working memory at the time when 

variable bindings occur. Differences between two sets are generated by a path- 

finding process which starts from analogous symbols in the two sets of bindings 

and attempts to find some path through the good elements that has no 

analogous path through the bad elements. The path finding process also 

searches for paths through the bad elements that have no analogous path 

through the good elements. Based on the difference that is found, the program 

constructs the variant of the old rule. Like in concept learning, the 

discrimination process is showed to learn a disjunctive concept. When a 

problem's search space is so large that the program cannot continue its 

processes until solution paths are derived, the program may use a number of 

heuristics (Langley, 1985, p. 223-226), which allows the program to learn while 

doing.

5.3 Empirical Learning

Empirical learning has been the dominant paradigm in machine learning 

and therefore there are many models developed. Such models include the 

ACT* model (Anderson, 1976, 1983), the SOAR model (Laird, Rosenbloom, and 

Newell, 1986), and many others (Anzai and Simon, 1979; Holland et al., 1986;
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Langley, 1983b; Neches,1987; VanLehn, 1987;1990). All these systems 

focused on procedure learning within the production systems framework (see 

Chapter 5 for production systems). Procedure learning addresses the question 

of how knowledge encoded declaratively in the memory can be transformed to 

procedures, that is rules, which are more efficient. In this perspective, learning 

is viewed as the piecewise acquisition of condition-action pairs.

Although empirical learning models are based on different hypotheses 

about learning mechanisms, they share two basic assumptions (Ohlsson and 

Rees, 1991). One is that when faced with a novel task and with insufficient 

knowledge to generate a solution, a learning system applies weak methods 

such as heuristic search to generate a task-relevant behavior. The other is that 

a learning system examines solution paths or traces of the problem-solving 

steps and creates new procedures by various ways such as generalization, 

discrimination, and composition (Anderson, 1983; Langley, 1984; VanLehn, 

1989). The basic insight underlying most empirical learning models is that we 

can generate heuristically useful conditions for legal rules through syntactic 

manipulations on data, solution paths, without considering domain principles. 

Those conditions gained would reduce the problem space at the next 

application. Therefore, it can be said that learning indeed occurs because 

search efforts are substituted with knowledge.

Models of empirical learning are indeed quite successful in explaining 

human learning in many cases (Anderson, 1983; VanLehn, 1982; Langley, 

1983a). Nonetheless, from the perspective of cognitive diagnosis empirical 

learning models are subject to a significant criticism that procedures are 

typically constructed in order to produce particular sequences of steps, with little 

attention to the meaning of those steps. This is because a procedure is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

75

acquired in isolation from its conceptual basis. If it is the case that the goal of 

education is to enable students to derive or construct procedures from the 

concepts and principles of a domain of interest, it may be desirable to relate 

procedure construction with concepts and principles. The next section provides 

arguments supporting this view.

5.4 Importance of Domain Principles in Procedure Construction

This study is based on the belief that procedures construction is based 

on domain principles rather than syntactic manipulation on data. This belief 

certainly assumes that if students understood concepts and principles of a 

domain, then errors would disappear, procedures would be better retained, and 

would transfer more easily to novel problem contexts (Ohlsson and Rees,

1991). Some evidences about conceptually based procedure construction in 

counting are reviewed in earlier chapters of this study (Gelman and Meek, 1983, 

1986; Resnick, 1982, 1983, 1984). It is also argued that procedures learned 

with understanding increase the likelihood that an appropriate procedure will 

be recalled and used effectively (Hiebert and Lefevre, 1986). The last 

assumption of the transfer of cognitive skills appears to be intuitively clear, 

nonetheless determining the breadth and depth of transfer of cognitive skills is 

not a simple matter. In fact, the study of transfer has a long history but yet there 

seems to be no convergence at all.

A fundamental question in the study of transfer is whether transfer is 

limited in scope or whether it is broad and ranges across diverse disciplines 

(Singley and Anderson, 1989). The broad view, first advocated as the doctrine 

of formal discipline, was challenged by associationists like Thorndike, who 

claimed that transfer was quite specific and was based on the existence of
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identical elements, known as the theory of identical elements. The Thorndike's 

theory of identical elements, however, was challenged by the gestalters like 

Werthemer, who showed that a broad range of transfer outcomes was possible 

and that the generality and applicability of knowledge was largely dependent 

on its representation-functional relations among elements-rather than identical 

elements. To gestalt psychologists, transfer occurred not through the piecemeal 

sharing of common elements but rather through the transposition of an entire 

structure. Based on the degree of transfer, gestalters then differentiated 

senseless learning or rote learning from meaningful learning. Senseless 

learning is the kind which would show little or no transfer whereas meaningful 

learning would show quite a b it.

With the advent of the information processing psychology, many 

traditional learning and transfer issues were temporarily set aside (Newell and 

Simon, 1972). One topic that has received considerable recent attention, 

however, is analogical transfer in problem solving (Anderson and Thompson, 

1989; Gentner, 1989; Holyoak and Thagard, 1989). Analogical problem solving 

starts with reminding of a similar problem (source) whose solution is known. 

Then the solution of that problem is mapped to the current problem (target). To 

test this kind of transfer, many studies use isomorph-problems that differ in 

terms of superficial features but have the same problem-solving operators and 

search space. Hayes and Simon (1977) found that subjects in most cases 

failed to notice similarities between problems and drawing on analogous 

solutions. Gick and Holyoak (1980, 1983) reported similar findings in their 

subsequent studies. Subjects often had difficulties in drawing correspondences 

between the two domains and consequently in solving the target problem even 

when the were informed of the relevance of the source (Hayes and Simon,
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1977; Kotovsky et al., 1985). The difficulty in many cases seems to be that 

subjects adopt representations of the two problems that rely too heavily on 

superficial features, which are radically different, but not heavily enough on 

deep, functional relationships, which are same. Expert-novice studies provides 

some evidences supporting this argument.

Expert-novice studies generally suggest that novices typical use shallow 

representations which mostly rely on superficial features whereas experts 

exploit deep representations which capture functional relationships (Chi et al., 

1981; Chi et al., 1982). Chi et al. (1981) asked novices and experts to sort 

physics textbook problems on any basis they wished. Novices did so on the 

basis of kinds of apparatus involved (lever, inclined plane, balance beam, and 

the like), or the visual features of the diagram accompanying the problem. 

Experts, on the other hand, classified the same problems on the basis of the 

underlying physics principle that was needed to solve the problem (e.g., energy 

laws, Newton's second law). Clearly, novices depended on superficial features 

of problems for categorization, while experts sorted on the basis of abstract, 

solution-relevant features. Novices, hence, would have more trouble 

transferring solution-relevant features of the source to the target problem 

solving than experts. Indeed, Smith (1986) showed that substantial transfer 

was possible between isomorphs, given sufficient practice on source problems.

What can be understood from the above discussion is that transfer is the 

key determinant of meaningful learning. And also that meaningful learning is 

possible only when subjects have deep representations. Deep representations 

contain domain principles. The usefulness of deep representations lies in utility 

of aiding the interpretation of the problems. Deep representations are, 

therefore, the characteristics of experts' representations. Thus it can be argued
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that any learning model which aims for diagnosis and tutoring must construct 

procedures similar to the form and content of a deep representation. Empirical 

learning is based on purely syntactic notion (Michalski, 1983). Empirical 

learning systems, because of their basic assumption of syntactic manipulation 

on data, are less likely to produce such representations than rational learning 

systems in which learning occurs with the help of domain principles. There is 

no guarantee that such a learning will be useful or even semantically well- 

formed when interpreted in the real world (Dejong, 1988).

5.5 Rational Learning

Unlike empirical learning models which are profound in machine 

learning literature, there are quite few rational learning models. Two prominent 

models are explanation-based learning and the state constraint. Explain-based 

learning uses domain principles to justify generalizations. All empirical 

learning models must make an unjustified inductive leap when it is assumed 

that a regularity that has been true in the past will be true in the future. Explain- 

based learning avoids this drawback by using domain principle to explain why 

the regularity will hold. Although explain-based learning is a good alternative 

for this study, it is decided to choose the state constraint theory for this study.

Ohlsson and Rees (1991) points out some technical differences between 

explanation-based learning and the state constraint theory. Explain-based 

learning systems employ their principled knowledge in the construction of an 

explanation. As a result, explanation-based learning systems require domain 

theories complete enough so that the required explanation can be constructed.

In the state constraint theory, on the other hand, principled knowledge is used to 

evaluate search states. It is argued that Ohlsson and Rees's system can
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operate with partial or incomplete domain theories. This point is viewed 

important, given the fact that human can perform with even incomplete 

knowledge although they make errors.

The state constraint theory of Ohlsson and Rees (1991) is the extension 

of Langley's (1983a) discrimination learning. The system proposed by Ohlsson 

and Rees, called Heuristic Searcher (HS), starts with very general rules and 

add more conditions as learning occurs. In HS, learning is viewed as the 

cognitive function of conceptual understanding. The state constraint theory 

views that performance with understanding occurs when the problem solver 

monitors his performance on the problem by comparing the successive states of 

the problem with what he knows about the task environment, i.e., principles 

about the environment. Learning occurs when an incorrect or incomplete 

procedure generates a problem state that is inconsistent with the principles. In 

the state constraint theory, therefore, a set of principles constitutes conceptual 

understanding, which are compared with the successive states of the problem, 

and principle violations trigger learning. Ohlsson and Rees developed 

hypotheses in detail in terms of understanding, performance, and learning (see 

Figure 5.3).
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Figure 5.3. Hypotheses of the state constraint theory

Hypotheses about understanding
1. Understanding consists of knowledge about the task environment.
2. Knowledge is declarative rather than procedural.
3. Understanding consists of principled rather than factual knowledge.
4. Principles constrain the possible states of affairs.

Hypotheses about performance
1. Thinking is heuristic search.
2. Principles constrain search through state evaluation.

Hypotheses about learning
1. Constraint violations trigger procedure revision.
2. Constraint violations inform procedure revisions.

Hypotheses about understanding basically specify that understanding 

consists of principled knowledge. Principled knowledge is represented 

declaratively and is used to constrain the possible states of affairs. These 

hypotheses about understanding in general concur with findings in the studies 

of cognitive development. Hypotheses of performance are extensions of the 

major hypothesis uphold in cognitive science, namely, that problem solving 

consists of heuristic search, carried out by a production system architecture. 

Hypotheses about learning answer two basic questions of learning: critic and 

modifier (Bundy et al. 1985). In these hypotheses, constraint violations identify 

when a revision is needed and also inform information of how the faulty 

procedure should be revised. Ohlsson and Rees (1991) proposed two 

algorithms which could be used for the revision of faulty rules.

HS is based on these hypotheses. Ohlsson and Rees (1991) apply HS 

to the domain of counting and of arithmetic, and find that HS is able to
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successfully construct procedures from conceptual knowledge represented as 

state constraints.

Heuristic Searcher (HS) consists of procedural knowledge, conceptual or 

principled knowledge, and a learning mechanism. A procedure consists of a 

collection of rules. Principles are represented in HS as state constraints. A 

state constraint C is an ordered pair <Cr Cs> of patterns in which each pattern is 

similar to the condition of a production rule. The left-hand pattern Cr, is called 

the relevance pattern, because it determines the class of search states to which 

the constraint is relevant. The right-hand pattern Cs is called the satisfaction 

pattern, because it encodes the criterion a state must match i order to satisfy the 

constraint (given that the relevance pattern matches). The relevance and 

satisfaction patterns are matched against the search states with the same 

pattern matcher that matches the production rule conditions, so new 

computational machinery has to be postulated. A cycle of HS consists of 

selection of a state, matching productions, and matching constraints. A cycle 

begins by HS selecting an unexpanded search state as the current state. The 

system then matches all production rules in the current procedure against the 

selected state. The system then matches its constraints against each new state 

and records which constraints, if any, are violated by that state.

HS has two modes of operation: performance and learning. In 

performance mode, HS perform best-first search with the number of constraint 

violations as the cost function. The idea of using the number of constraint 

violations as the evaluation function is similar to the one proposed by Langley 

et al. (1990). The evaluation function implies that HS prefers solution paths that 

are more congruent with its principled knowledge over those that are less 

congruent. In learning mode, HS preforms a breadth-first search, because it
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needs to stop as soon as a constraint violation occurs. Given a constraint 

violation, HS applies its learning mechanism to the faulty rule which generated 

the constraint violation and to revise it.

The state constraint theory of Ohlsson and Rees (1991) merits attention 

in several aspects. It uses a separate, novel representation for principled 

knowledge, called state constraint, and consequently opens a path to 

meaningful learning. A state constraint is a two-part pattern that a search state 

has to satisfy in order to be valid. A state constraint is not a production rule or 

an inference rule. It is not a Horn clause. A state constraint does not guarantee 

that its right-hand side is true when its left-hand side is true; it claims that the 

right-hand side ought to be true. HS's learning can be viewed as trading 

evaluation selectivity with generative selectivity. Search efforts are traded with 

powerful knowledge. Thus, HS is a strategy learning system but utilizes a 

rational learning mechanism. The rational learning mechanism embedded in 

HS constructs a target procedure by constraining an initial procedure until it is 

consistent with the relevant principles.

5.6 Summary

This chapter reviews diverse perspectives and methodologies of 

cognitive diagnosis. In this study, cognitive diagnosis is viewed as consisting of 

inferrring a student model and producing error descriptions based on a inferred 

student model. Error descriptions can be used in an instruction module to 

decide the best remediation instruction.

Three approaches of describing errors are reviewed, and the 

reconstruction approach is taken for this study. Even in the reconstruction 

approach, there are two approaches. One approach reconstructs buggy
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procedures on the basis of syntactic manipulations of symbols, while the other 

reconstructs faulty procedures on the basis of semantic rationalization. Since 

the constructivism assumption itself dictates semantic rationalization, this study 

attempts to model the process of semantic rationalization.

This study finds alternative methodologies for reconstruction: planning 

and learning. Learning is favored, and especially a rational learning 

mechanism called the state constraint theory (Ohlsson and Rees, 1991), is 

chosen as a formalism for this study.
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Chapter 6 A MODEL OF COGNITIVE DIAGNOSIS

In this chapter, a model of cognitive diagnosis, called PSCD (Production 

System for Cognitive Diagnosis), is proposed. PSCD is based on three 

constraints, and uses state constraints for expressing conceptual knowledge 

(Ohlsson and Rees, 1991) and productions for expressing procedural 

knowledge. The main hypothesis of PSCD is that conceptual understanding 

underlies procedural performance. In other words, PSCD hypothesizes that 

student errors arise from using buggy procedures that are constructed with 

incomplete understanding of domain principles.

PSCD is written in Common LISP. It has two modes of operation: 

performance and diagnosis. In the performance mode, PSCD solves a problem 

with given knowledge by searching the search space of the problem. In the 

diagnosis mode, PSCD diagnoses a student's inadequate understanding of a 

domain with the student's problem solving traces. Writing a program of a 

production system would have been a horrible experience without such 

valuable references as Anderson et al. (1987), Winston and Horn (1987), and 

Charniak and McDermott (1985). Most ideas employed in PSCD come from 

these references. Especially, the pattern matcher of PSCD is a modified one of 

Anderson et al. (1987, Chapter 15).

Section 6.1 presents central features of PSCD. Sections 6.2 and 6.3 

explain representation languages of PSCD. Section 6.3 explains how PSCD 

detects errors and . In Section 6.4, PSCD is applied to a standard counting 

task, the same task as Ohlsson and Rees' (1991) HS is applied. In Section 

6.5, PSCD is applied to a more complex task of transportation problem solving 

whose modeling is our main objective of the study. Section 6.6 summarizes this 

chapter.
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6.1 The Central Architecture for Performance and Cognitive 

Diagnosis

There are five main characteristics associated with PSCD (Figure 6.1). 

These characteristics are similar to those of Newell's (1990) SOAR and Ohlsson 

and Rees' (1991) HS. The first of these states that search through problem 

spaces is the framework within which knowledge plays its role and in which task 

assessment is assessed. Two types of knowledge operate in the problem 

space. Conceptual knowledge guides the search and procedural knowledge 

implements the operators. Conceptual knowledge is represented as state 

constraints and procedural knowledge is represented as a set of productions. 

PSCD initially evokes the problem-space search with a set of productions. The 

problem-space search can consider one state at a time. At each state of the 

problem search, the knowledge search finds the relevant constraints and 

guides the problem-space search. At the performance mode, PSCD uses the 

number of constraints violation as the evaluation function to assess its progress 

in the problem-space search as in HS (Ohlsson and Rees, 1991). At the 

diagnosis mode, there is no need of problem-space search and of task 

assessment because at this diagnosis mode PSCD reads the trace of problem 

solving and only reports the constraints violated in the trace given to it.

Figure 6.1. The main characteristics of PSCD

1. Problem spaces represent all tasks
2. Productions provide procedural knowledge.
3. State constraints provide conceptual knowledge.
4. Attribute/object/value representation for all facts.
5. Goals direct all behavior.
6. The strengthening process adjusts the state of conceptual understanding.
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In PSCD, all entities are represented as object-attribute-value (OAV) 

triples. OAV representation is used in SOAR, HS, and many others. Conditions, 

actions, and working memory elements all are OAV triples. Objects are defined 

by the set of attributes and values associated with them. Two objects are the 

same if they have the same attributes and values. OAV representation is 

argued to be easy to manipulate and to admit combinatorial variety. PSCD is a 

hierarchical production system like ACT* (Anderson, 1983). It does not keep a 

goal stack, rather goals are chained through productions.

One seemingly essential characteristic that does not appear in the list is 

about the learning mechanism. It has been argued that ITS must have a 

runnable learning mechanism as its part in order to build a student model. A 

student model built thereby can be used as a basis for assessing a student's 

weaknesses. In the proposed architecture, however, it is not necessary to 

assume a specific revision mechanism which creates new rules in response to 

credit assignment information (Ohlsson and Rees,1991; Langley, 1985). It is 

viewed that student errors arise from using buggy procedures. From the 

perspective of constructivism, buggy rules are constructed due to missing 

constraints, i.e., incomplete understanding of domain principles. Thus it is 

possible to represent a student model as a proper subset of a complete set of 

constraints, and to diagnose student errors as lacking one or more missing 

constraints.

PSCD, however, hypothesizes a revision mechanism, called 

strengthening process. The strengthening process is used in many learning 

systems (e.g., Langley and Ohlsson, 1982; Anderson, 1983) and is advocated 

as a superior means for modeling errors (Reason, 1990). ACM (Langley and 

Ohlsson, 1982) and ACT* (Anderson, 1983) associated strength values with
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productions and revise values as learning occurred. In contrast, PSCD 

associates strength values with constraints.

A correct set of constraints can be viewed as all having strength values 

higher than a certain threshold value and hence all constraints are applicable 

for state evaluation. A perturbed set of constraints, on the other hand, refers to a 

set of constraints some of which have strength values higher than a threshold 

value and the others do not. Those constraints with strength values lower than 

a threshold value are not applicable for state evaluation and therefore allow 

incorrect states to be considered, consequently generating errors. This study 

does not focus on such issues as what value a threshold be and how the 

strength process works. Rather it is posited that one can build such a 

mechanism and determine an appropriate threshold value later, when a fully 

implemented ITS is available and makes it possible to collect a large amount of 

data, i.e., students' problem-solving traces. In this study, it is simply assumed 

that a constraint is either applicable or not applicable. The question becomes 

whether PSCD is able to correctly identify errors from the problem-solving 

trace, and to suggest violated principles associated with those errors.

6.2 Representation of PSCD

Determining an appropriate representation is not an easy task at all. 

VanLehn (1983, p. 249) observed that "Getting the knowledge representation 

language "right" allows the model to be made simple and to obey strong 

principles" (italics in original). VanLehn (1983) admitted that Repair theory's 

representation language had undergone five major changes and each change 

had profound effects on the simplicity and principledness of the model. This 

study also have undergone the similar experience. Several representational 

languages which looked promising are tried. These included, although not
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limited to these, display-based representation (Larkin et al., 1980; Larkin, 1981; 

Larkin, 1982; Larkin, 1983; Larkin et al., 1984; Larkin and Simon, 1987; Larkin, 

1989), OPS5 (Brownston et al., 1985), and ACT* (Anderson, 1976, 1983). It 

appears that each approach has unique advantages and hidden costs as well, 

and thereby limits the set of possible languages that can be used to represent 

the domain under study. The following subsections discuss representation for 

facts, for principled knowledge, and for procedural knowledge.

6.2.1 Representation for Facts

PSCD uses attribute-object-value (AOV) triples to represent facts. The 

first element of this structure is an attribute of an object in the problem domain. 

For example, one may wish to describe the status of a line in a transportation 

tableau whether it is deleted or not. The name of the line and the value of the 

attribute follows. Thus one may represent a line called r1 which has been 

deleted as (status r1 deleted). Although it looks as simple as this, there are 

several important aspects to be considered.

Charniak and McDermott (1985, pp. 11-14) proposed three principles of 

representation (Figure 6.2). The first principle is concerned with the situation in 

which a referent in a representational language is not clear. For example, when 

we talk about "Jack", there can be more than one interpretation of "Jack" 

because there can be several persons whose names are all "Jack." This 

problem is called referential ambiguity. The solution is to make up names for 

each individual so that one name uniquely corresponds to one individual. Such 

unique names are instances or tokens of the class "Jack." The second principle 

is concerned with ambiguity in predicates. The problem of ambiguity in 

predicates is called word-sense ambiguity. For example, representation for a
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sentence like "Jack caught a ball" may come out like Qack-2 caught ball-17). 

The problem of this representation is that the meaning of "caught" is not clear 

because the word "caught" in English has more that one meaning. As before 

the solution is to make up names for each word senses so that one name 

uniquely correspond to one word sense. Thus it would look like (jack-2 caught- 

object ball-17). The last principle requires one to clearly indicate functional 

structure. In the previous example, the functional structure of the sentence 

distinguishes the "catcher" flack-2) from the "caught" (ball-17). The solution is to 

use the order of symbols there in exactly the same way that English does. Thus 

(jack-2 caught-object ball-17) is not the same as (ball-17 caught-object jack-2). 

According to Charniak and McDermott, for historical reasons representations 

are typically written with the predicate first. Thus we would write the previous 

example as (catch-object jack-2 ball-12).

Figure 6.2. Principles of representation

1. Representation must make the choice of referent explicit
2. All predicates in an representation must be unambiguous.
3. Representation must clearly indicate functional structure. English uses 

word order to express what we call functional structure.

AOV triples naturally captures the functional structure by specifying the 

structure with an attribute first, an object second, and a value as the last.

Another key idea that may be useful in developing AOV triples is the distinction 

between ISA relationships and INST relationships. INST says that a particular 

individual is a member of some class, (element). ISA says that one class is a 

more general version of another.(subset). For example, suppose there is an
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elephant whose name is "Clyde". We may say that "Clyde" is an INST 

(instance) of the class "elephant" and the class "elephant" ISA higher animal.

INST and ISA are two general relationships between objects. Some 

arbitrary relationships between objects can be hypothesized in addition to INST 

and ISA. These arbitrary relationships are more likely domain-specific.

Sections 6.4 and 6.5 discuss domain-specific relationships hypothesized in the 

specific domain chosen for application.

6.2.2 Representation for Principled Knowledge

Principled knowledge refers to a collection of general principles about 

the task environment. Principled knowledge constitutes a problem solver's 

conceptual understanding of a domain. In the state constraint formalism, 

principles are stated in declarative forms.

A state constraint C is an ordered pair <Cr Cs> of patterns in which each 

pattern is similar to the condition of a production rule. The left-hand pattern Cr 

is called the relevance pattern, because it determines the class of search states 

to which the constraint is relevant. The right-hand pattern Cs is called the 

satisfaction pattern, because it encodes the criterion a state must match in order 

to satisfy the constraint, given that the relevant pattern matches.

For example, consider the domain principle for counting. A task of 

counting requires one to count a set of unordered objects. A representation for 

counting consists of symbols for objects (x1, x2,...), numbers (n1, n2, n3,...), and 

sets, and four properties (first, current, answer, and origin) and four binary 

relations (next, associate, member, and after) among objects. To count a set of 

unordered objects is to select repeatedly an object from that set, to increment 

the current number, and to associate the new number with the selected object.
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When all objects in the set have been associated with numbers, the last number 

to be associated with an object is asserted to be the answer to the counting 

problem. One counting principle proposed by Gelman and Gallistel (1978) is 

the one-to-one mapping principle which states that counting consists of 

establishing a one-to-one mapping between numbers and objects. Ohlsson 

(1991) breaks this principle down into four components and represents them as 

state constraints (see Figure 6.5). For each constraint, the relevant pattern Cr is 

shown to the left and the satisfaction pattern Cs to the right, separated by the 

arbitrarily chosen symbol

For example, let us take a look on the first principle of standard counting 

in Figure 6.5. The first constraint in the one-to-one mapping principle denotes 

that if the object X1 is associated with the number N1 and also with the number 

N2, then the number N1 and the number N2 must be equal. Similarly, the 

second constraint states that if the object X1 is current and X1 is after X2, then 

X2 must be associated with a number N. From this example, it may become 

clear that the relevance patterns determine the applicability of the constraint 

and satisfaction patterns test for its success.

6.2.3 Representation for Procedural Knowledge

PSCD represents procedural knowledge in a set of productions. A 

production is an ordered pair of conditions and actions. Viewing from the 

perspective of search, a production or a set of productions represent an 

operator which transform a state to other state. The appropriate actions to these 

productions are determined rather easily because we can observe analogous 

actions in the environment. However, conditions which specify the appropriate 

context for actions to be applied are seldom obvious (Langley, 1985). As seen
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in Chapter 5, studies in strategy learning systems focus on deriving such 

conditions from examining a lot of examples or data. Neches (1981) suggests 

three types of conditions that a production may have: (a) conditions that define 

the context in which the production is applicable; (b) conditions that enable 

processing on the action side of a rule; (c) conditions that serve to affect flow of 

control

The first type of condition contain knowledge about the circumstances in 

which it is meaningful to execute the production. Typically this type of 

conditions are instantiated as goals. The second type of condition is usually 

necessary in order to assigning values to variables referenced on the action 

side. These are legal conditions which must be bound to some values in order 

to to instantiate actions. The third type of condition holds heuristic knowledge 

about desired sequencing of productions. Langley (1987) suggests the third 

type of conditions can be learned by a learning mechanism such as 

discrimination learning. Langley's discrimination learning (1987) is a type of 

empirical learning because it learns from experience. Ohlsson1 state constraint 

theory (1991) is similar to Langley's discrimination learning (1987) in that it 

generates more specialized new rules during the course of learning, but it is a 

rational learning mechanism because it relies on conceptual knowledge in 

building new rules.

In PSCD, procedural knowledge consists of initial knowledge runnable to 

generate solutions. Productions representing procedural knowledge impose 

minimal guidance on the application of the operators. Two types of conditions, 

goal and legal conditions, are attached initially to productions. Goal conditions 

specify the meaningful context of productions. Legal conditions are concerned 

with retrieving bindings from working memory to instantiate actions; this allows
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the actions to be executed. But the initial rules do not specify when, under what 

circumstances, or in what order the operators should be executed. Therefore 

initial productions impose a minimal assumption on the background knowledge 

of students. Students are expected at least to know what actions are available 

and their associated minimal conditions.

6.2.4 The Strengthening Process

The strengthening process adjusts the level of strength associated with a 

state constraint depending on its success or failure in explaining a problem

solving trace of a student. The strength of a state constraint represents the 

degree of understanding associated with a state constraint. Thus, for example, 

a state constraint with a higher strength than a threshold value may be 

considered in making a student model whereas a state constraint with a lower 

strength may not be considered. A set of state constraints with higher strengths 

than a threshold vaiue and a sei of productions together would make a 

runnable student model. Such a runnable student model can be used to predict 

student's errors or problem-solving traces in a different set of problems from 

those on which a student model is based.

There can be many schemes for the strengthening process. Anderson 

(1983), for example, associates the strength of 1 with a production when it is 

created, and increases its value when it is successfully applied and decreases 

its value by 25% when it applies and receives negative feedback. It is possible 

to devise a similar scheme of the Anderson's strengthening process in PSCD. 

PSCD, however, assumes the crudest strengthening scheme that hypothesizes 

only existence or non-existence of constraints in a student model. Thus, 

constraints can have either one of two values: zero (non-existence) or one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

94

(existence). Examining problem-solving traces, PSCD will reports violated 

constraints as they arise. The set of reported constraints and their frequencies 

constitutes a basis for determining the best remedial instruction for correcting 

student's cognitive errors. It is assumed that this information would suffice to do 

that. Since it is the tutoring model that concerns the issue of determining the 

best remedial instruction, more definite conclusion could be achieved by the 

future study which includes the tutoring model as well as the diagnosis model. 

Until then, this study simply accepts the assumption.

This assumption implies two concerns. First, since this study emphasizes 

domain principles in explaining errors, explanations of why errors occur, i.e., 

student models, must be tied with domain principles. Second, given the first 

concern, information about violated constraints and, if ever needed by the 

tutoring model, their associated violated frequencies would be sufficient to 

determine the best remediation. In this study, it is assumed that PSCD 

augmented with a strengthening mechanism would suffice to generate 

explanations elegant enough to allow sophisticated remediations.

The strengthening mechanism of PSCD can be viewed as a perturbation 

technique that generates student models from expert models, because in the 

strengthening mechanism a student model is hypothesized as a subset of an 

expert model. The perturbation technique of PSCD is different from previous 

uses in that it operates on state constraints rather than on procedural 

productions (Brown and VanLehn, 1980; Young and O'Shea, 1981) or on 

preference productions (VanLehn et al., 1989). Since the correct set of state 

constraints represents the conceptual understanding of an expert, the perturbed 

set of state constraints represents inadequate conceptual understanding or 

misconceptions on the part of novices.
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6.3 Performance and Diagnosis of PSCD

Two major functions of PSCD are performance and diagnosis. In the 

performance mode, PSCD executes a procedure with a set of constraints.

PSCD performs a best-first search with the number of constraint violations as 

the evaluation function. The top level function that starts the performance mode 

of PSCD is shown in Figure 6.3 The algorithm for a best-first search comes from 

Winston (1984, p. 98) and Winston and Horn (1989, p. 281). Initially a one- 

element queue consisting of the root node is formed. If there is (halt) in the 

working memory, PSCD stops. Otherwise, PSCD proceeds to select the best 

path in the queue. The best path is determined by first identifying an equivalent 

class of paths which all has the least number of constraint violations, if there are 

multiple paths in the equivalent class find another equivalent class of paths, 

which all have the longest path, from the least constraint violation class. If there 

are still multiple paths in the longest-path class, PSCD will select any path 

randomly.

Figure 6.3. The top-level function of performance

While (the queue is not empty)
Begin

If (there is halt) Then Stop 
Else 

Begin
(Select the best path in the queue)
(Extend the best path by applying productions)
(Add extended paths to the queue)
(Sort the entire queue by the number of constraint violations)

End
End.
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The next step is to extend the selected best path to generate new 

possible states. PSCD finds applicable productions and all instantiations for 

each production. Each instantiation forms a new path. Each instantiation is 

fired and the resulting new state is checked to determine the nature and number 

of constraint violation. This information is attached to the new path. All new 

paths are generated through this process and added to the queue. The entire 

queue is then sorted according to the number of constraint violation, in the order 

of the least violation path first. The entire process continues until the goal is 

achieved (i.e., the "halt" production is fired) or there is no path in the queue.

In the diagnosis mode, PSCD makes a diagnosis in response to a 

problem solving trace. The process of the diagnosis mode is much simpler than 

that of the performance mode. The top-level function of PSCD for diagnosis is 

shown in Figure 6.4. An action sequence, often called action protocol (Kowalski 

and VanLehn, 1988; VanLehn et al., 1989b), is an input to the diagnosis 

component of PSCD. Diagnosis starts with selecting the first action in the action 

sequence. The action is tested if the action is one of the possible actions in the 

current state. Since all productions are overly general, once applicable a 

production would generate multiple instantiations. The action must be one of 

them. PSCD must hold this requirement because state constraints are very 

much dependent on productions in their developments and operations. When 

the action is not one of possible actions, PSCD may not be able to give correct 

diagnosis.
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Figure 6.4. The top-level function of diagnosis

While (the action sequence is not empty)
Begin

(take the first action in the action sequence)
If (the action is not a member of the set of possible instantiations of the 

associated production)
Then Stop

Else (find all constraints violated in the state resulting from applying the 
action)

End.

The next step of diagnosis is to apply all constraints to the state resulting 

from firing the action, and find all relevant constraints. All relevant constraints 

that are found are tested if they are satisfied. Unsatisfied constraints, that are 

violated constraints, are reported. The tested action is popped our from the 

action sequence with which the whole process restarts again. This process 

continues until there is no action available in the action sequence.

This study is mainly concerned with the diagnosis of principled errors. 

Principled errors are those errors that can be seen as violation of one or more of 

constraints. This concern is based on the belief that most errors that can be 

found are rooted in inadequate understanding of domain principles or in failure 

of applying those basic principles to problems. This belief is based on the 

conclusions of a number of studies in cognitive development and cognitive 

science (Resnick and Omanson, 1987; Resnick 1982; Gelman and Meek, 1986; 

Chi et al., 1982; Chi et al., 1982; Dejong, 1988). It is argued that if students 

understood concepts and principles of a domain, then errors would disappear, 

procedures would be better retained, and would transfer more easily to novel 

problem contexts. Teaching domain principles, however, may not guarantee 

skilled performance. As Resnick (1982) observed in the case of arithmetic
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problems, children frequently made errors even although they possessed 

enough principled understanding necessary to answer correctly. Resnick 

(1982) attributed this to an inadequate linking of the principled understanding 

with the syntax of the written algorithms. In other words, children have 

adequate understanding of principles relevant to the domain but they are not 

pretty sure when those principles are relevant. The state constraint formalism is 

a wonderful idea because it allows to represent principles in terms of when they 

are relevant and how they can be satisfied. Diagnosis of errors in PSCD is 

based on this idea.

As explained, diagnosis of principled errors is based on principled and 

procedural knowledge. One requirement for diagnosis is that actions observed 

in empirical data must be generatable from PSCD's productions. When this 

requirement is not met, PSCD cannot guarantee correctness of its diagnosis. 

When this is not the case, PSCD proceeds to find violated constraints for each 

action and report them. A violated constraint can be interpreted as incomplete 

understanding of the constraint on the part of the student. Incomplete 

understanding of a principle can be expressed having a lower strength value 

than a threshold value. The diagnosis system relates a user's incorrect 

performance to violations of constraints which are viewed as incomplete 

understanding of those constraints. Thus PSCD hypothesizes that incorrect 

performance can be modeled with a perturbed set of constraints and initial 

productions.

6.4 Modeling Standard Counting

With PSCD this study models standard counting first to validate its 

performance ability and to compare it with HS (Ohlsson and Rees, 1991). This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

99

study takes standard counting as the first application because HS is applied to it 

and also because the strongest empirical evidence for the hypothesis that 

conceptual understanding facilitates procedure acquisition comes from the 

domain of counting. Our first application in standard counting shows how our 

program performs on the basis of a state constraint representation of the 

principles of counting. This study adopts from Ohlsson and Rees (1991) initial 

procedural knowledge (i.e., the problem space) and the model's principled 

knowledge (i.e., the state constraints that encode the counting principles). With 

these initial procedural and principled knowledge, it will be shown how the 

program performs a counting task.

Standard counting involves in counting a set of unordered objects.

Greeno et al. (1984) coined the term "standard counting" to denote a standard 

procedure of counting. Its procedure is shown in Figure 6.5. Figure 6.6 shows 

a representation for standard counting. The representation includes three types 

of entities, their associated properties, and relations among entities. The 

objects represent physical objects such as dice (?). The set ToCountSet 

represents the collection of objects which need to be counted. Any object can 

be a member of the set ToCountSet, which means that the object need to be 

counted. An object that is not the member of ToCountSet is physically present 

but not need to be counted. Numbers are assumed to be retrieved from a 

number sequence. The only relationship between numbers is "next". For 

example, (next 3 2) means that the number "3" is next to the number "2." This 

representation, therefore, does not assume any prior knowledge of other 

relationships such as greater-than or less-than. When a number (n) is assigned 

to an object (x), a new assertion (associate x n) is created to represent the new 

relationship between the number and the object. The predicate "after" denotes
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that the object x1 is considered after the object x2. Therefore, the "after" 

predicate represents the object sequence of consideration in problem solving.

Figure 6.5. A standard procedure of counting

1. Select repeatedly an object from the set required to be counted, increment 
the current number, and to associate the new number with the selected 
object.

2. When all objects in the set have been associated with numbers, the last 
number to be associated with an object is asserted to be the answer to the 
counting problem.

Figure 6.6. A language for standard counting

Types of entities
(a) objects: x1,x2,... 

properties: first, current
(b) numbers: n1,n2.....

properties: first, current, answer, origin
(c)sets: ToCountSet

Relations
(a) (next n1 n2): The number n2 is the successor of the number n1 in the 

number line.
(b) (associate x n): The object x is associated with the number n
(c) (member x ToCountSet): The object x is a member of a set ToCountSet
(d) (after x1 x2): the object x1 is after the object x2 in a sequence.
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The initial knowledge state
The initial knowledge state for standard counting contains the number 
sequence in which numbers are liked to its successor with the next relation, 
the set of objects to be counted (ToCountSet), and some additional objects 
that are not members of the ToCountSet

Operators
1. (PickFirst x)

add: (first x)(current x)
2. (PickNext x1 x2)

add: (current x2)(afterx2x1) 
delete: (current x1)

3. (Initialize n)
add: (first n)(current n)

4. (increment n1 n2)
add: (current n2)(after n2 n1) 
delete: (current n1)

5. (associate x n) 
add: (associate x n)

6. (assert n)
add: (answer n)

Goal state
The goal is to reach a state in which some number has the property of being 
the answer.

Figure 6.7 shows a problem space for standard counting that builds on 

that representation. The problem space includes six operators. The initial 

knowledge state consists of a set of assertions representing number facts and 

objects which belong to ToCountSet as well as objects which do not. Applying 

operators to the initial knowledge state generates a set of new states. It is the 

search mechanism that navigates the problem space to reach a goal state. In a 

standard counting task, the goal state is a state which has an assertion (answer 

n).
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Figure 6.8 shows working memory elements and initial rules for standard 

counting. Initial working memory elements represent the initial knowledge state 

for a counting task with 5 numbers and four objects. Each number is declared 

as an instance of the 'number' class. The number 1 has a property of being 

'origin'. The number 2 has a relationship of being 'next' to the number 1. 

Similarly, the number 3 has a relationship of being 'next' to the number 2. Four 

objects are declared as instances of the 'object' class. Among them, three 

objects (b1, b2, b3) have relations of being member to the ToCountSet The 

ToCountSet is declared as an instance of the 'set' class and represents the set 

of to-be-counted objects.

The initial rules impose minimal guidance on the application of the 

operators. Their main effect is to retrieve bindings for the operator arguments 

from working memory; this allows the operators to be executed. But the initial 

rules do not specify when, under what circumstances, or in what order the 

operators should be executed. This means that PSCD initially does not know 

how to count. The set of initial rules represent an executable procedure, and its 

execution will generate task-relevant but incorrect behavior. Figure 6.7 and 

Figure 6.8 together represent the initial procedural knowledge of PSCD in this 

application.
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Working-memory
(number 1)(origin 1)
(number 2)(next 2 1)
(number 3)(next 3 2)
(number 4)(next 4 3)
(number 5)(next 5 4)

(object b1)(member b1 ToCountSet) 
(object b2)(member b2 ToCountSet) 
(object b3)(member b3 ToCountSet) 
(object b4)

(set ToCountSet)

Rules
1. (object x) ==> (PickFirst x)
2. (object x1)(current x1)(object x2) ==> (PickNext x1 x2)
3. (number n) ==> (Initialize n)
4. (number n1)(current n1)(number n2) ==> (increment n1 n2)
5. (number n)(current n)(object x)(current x) ==> (associate x n)
6. (number n)(current n) ==> (assert n)
7. (answer n) ==> (halt)

In order to generate correct behavior, PSCD needs principled 

knowledge. Building on counting principles, suggested by Gelman and 

Gallistel (1978), Ohlsson and Rees (1991) proposed five counting principles 

and represented them as state constraints as shown in Figure 6.9. The one-to- 

one mapping principle states that counting consists of establishing a one-to-one 

mapping between numbers and objects. They break this principle down into 

four component ideas: that an object is associated with at least one number, 

that an object is associated with at most one number, that a number is 

associated with at most one object, and that a number is associated with at least 

one object. The cardinal principle states that the answer to a counting problem 

is the last number to be associated with an object. This principle is broken
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down into three component ideas: that the size of a set cannot be known until 

all objects in the set have been associated with numbers, that the answer is a 

number associated with some object, and that the answer is the last number 

considered.

The regular traversal principle states that traversing of the number line 

begins at unity and then follows the next relations. The state constraint 

representation breaks this principle down into four component ideas: that 

counting begins with the origin of the number line, that each number considered 

is the successor of the previous number, the numbers are considered one at a 

time, and that each number is associated with some object. The order 

imposition principle imposes a linear ordering on the objects counted. It is 

broken down into six component ideas: Only one object is designated as the 

first object in the ordering; objects are considered one at a time; no object is 

considered twice; an object is not considered after itself; the first object is never 

considered again; and finally, no object that is not a member of the to-be- 

counted set is considered. Finally, the actions of traversing the number line in 

the right way and imposing an order on the objects are not sufficient to produce 

correct counting. The two processes must be connected with each other in the 

right way. The coordination principle states that objects and numbers are 

associated with each other in the order in which they are attended to.

The state constraints in Figure 6.9 represent the principled knowledge of 

the PSCD system in counting application. Ohlsson and Rees (1991) claim that 

the set of state constraints is complete and is sufficient to determine correct 

counting. With the initial knowledge of the system being defined, PSCD is 

presented with an example counting problem shown in Figure 6.10. PSCD can 

correctly solve the problem.
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Figure 6.9. State constraints

A. The one-to-one mapping principle
1. All object should be associated with at most one number.
(object x1)(number n1)(number n2)(associate x1 n1)(associate x1

n2)**(equal n1 n2)
2. Every object considered during counting should be associated with some 

number
(object x1)(object x2)(current x1)(after x1 x2)**(number n)(associate n)
3. A number should be associated with at most one object.
(object x1)(number n1)(object x2)(number n2)(associate x1 n1)(associate 

x2 n2)**(equal x1 x2)
4. For every number retrieved during counting, there should be some object 

with which it can be associated.
(object x1)(number n)(current n)(associate x1 n)**(current x2)

B. The cardinal principle
1. A number is the answer to a counting problem only if there are no objects 

that are members of the to-be-counted set but that has not been 
associated with some number.

(number n1)(answer n1)**(object x)(not (member x ToCountSet)(not 
(associate x n2)))

2. The answer to a counting problem is one of the numbers associated with 
some object.

(number n)(answer n)**(associate x n)
3. The answer to the counting problem is the last number to be considered 

in the counting process.
(number n)(answer n)**(current n)
C. The regular traversal principle
1. Initialize counting at the first number in the number line.
(number n)(first n)**(origin n)
2. Consider one number at a time.
(number n1)(number n2)(current n1)(current n2)(equal n2 n1)
3. The numbers should be considered in the order defined by the next 

relations.
(number n1)(number n2)(current n1)(after n1 n2)(not (equal n1 n2))**(next 

n2 n1)
4. For each number considered, the preceding number should be 

associated with some object.
(number n1)(Number n2)(next n2 n1)**(object x)(associate x n2)
D. The order imposition principle
1. Initialize counting with a single object.
(object x1 )(object x2)(first x1 )(first x2)**(equal x1 x2)
2. Do not consider an object that is already associated with a number.
(object x)(current x)(number n)(not (current n))**(not (associate x n))
3. Do not cycle back to the first object.
(object x1)(first x1)**(not (after x1 x2))
4. Do not consider an object after itself.
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(object x1 )(object x2)(after x1 x2)**(not (equal x1 x2))
5. Consider only one object at a time.
(current x1 x2)**(equal x1 x2)
6. Do not consider object that are not in the set of to-be-counted objects, 
(object x)(current x)**(member x ToCountSet)
E. The coordination principle
1. Numbers and objects are associated with each other in the order in 

which they are considered.
(object x)(number n1)(number n2)(current x)(current n1)(associate x 

n2)**(equal n1 n2)
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Figure 6.10. A program trace for an example problem

#S(INSTANCE RULE START ACTIONS NIL VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE PICKFIRST ACTIONS (('ADD-DB (CURRENT B1)) (‘ADD-DB (FIRST B1))) 

VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE INITIALIZE ACTIONS ((‘ADD-DB (CURRENT 1)) (‘ADD-DB (FIRST 1))) 

VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ASSOCIATE ACTIONS ((‘ADD-DB (ASSOCIATE B1 1))) VIOLATIONS NIL 

TOTAL 0)
#S(INSTANCE RULE PICKNEXT ACTIONS ((‘DELETE-DB (CURRENT B1)) (‘ADD-DB (AFTER 

B2 B1)) (‘ADD-DB (CURRENT B2))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE INCREMENT ACTIONS ((‘DELETE-DB (CURRENT 1)) (‘ADD-DB (AFTER 2

1)) (‘ADD-DB (CURRENT 2))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ASSOCIATE ACTIONS ((‘ADD-DB (ASSOCIATE B2 2))) VIOLATIONS NIL 

TOTAL 0)
#S(INSTANCE RULE PICKNEXT ACTIONS ((‘DELETE-DB (CURRENT B2)) (‘ADD-DB (AFTER 

B3 B2)) (‘ADD-DB (CURRENT B3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE INCREMENT ACTIONS ((‘DELETE-DB (CURRENT 2)) (‘ADD-DB (AFTER 3

2)) (‘ADD-DB (CURRENT 3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ASSOCIATE ACTIONS ((‘ADD-DB (ASSOCIATE B3 3))) VIOLATIONS NIL 

TOTAL 0)
#S(INSTANCE RULE ASSERT ACTIONS ((‘ADD-DB (ANSWER 3))) VIOLATIONS NIL TOTAL 0)
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6.5 Modeling Transportation Problem Solving

In this section, PSCD is applied to transportation problem solving, the 

main application of PSCD in this study. Transportation problem solving is 

usually taught in introductory. Management science has become an integral 

part of management education, because it provides a rich set of tools that help 

decision makers formulate and solve complex problems in a rational and 

systematic way. It has been repeatedly observed that use of management 

science tools improves the quality of decision-making.

Teaching and learning management science has not been easy. Many 

students have experienced difficulties in understanding the principles that 

underlie the formal methods of management science, and using principles in a 

specific problem solving contexts. In this study, transportation problem solving is 

chosen as a main application task because of its simple structure. In the 

following sections, first, transportation problem solving is described, and from 

this description, principled and procedural knowledge are extracted and 

represented with the representational language of PSCD. Then, PSCD is 

demonstrated to be sufficient to solve transportation problems.

6.5.1 Transportation Problem Solving

The transportation problem deals with the transportation of a product

from a number of sources, with limited supplies, to a number of destination with
/

specified demands, at the minimum total transportation cost (Lee et al., 1990). 

Transportation problems are a special type of linear programming applications. 

Although transportation problems can be solved by the simplex method, 

because of their special network structures, many other simple techniques 

have been developed. These techniques are generally more efficient than the
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simplex method, but are actually extensions of the linear programming concepts 

and procedures.

The solution procedure for the transportation problem involves first 

finding an initial feasible solution and then proceeding iteratively to make 

improvements in the solution until an optimal solution is reached. Most 

textbooks present three methods for deriving an initial solution: northwest 

corner method, least-cost method, and Vogel's Approximation method (VAM). 

VAM is generally known to give a better initial solution than the northwest 

corner method or the least-cost method. This study applies PSCD architecture 

to VAM to study adequacy of the architecture in performing cognitive diagnosis.

VAM consists of making allocations in a manner that will minimize the 

penalty cost for selecting the wrong cell for an allocation. The general 

procedure for the VAM is shown in Figure 6.11 (Lee et al., 1990). From this 

description of the VAM procedure, it may not be hard to find actions needed for 

performing the procedure. Although there can be some different set of actions, 

this study employes the set of operators as shown in Figure 6. Operators are 

described in detail in Section 6.5.2. With these operators, a control structure of 

the VAM procedure is defined as in Figure 6.12. The control structure shows 

appropriate actions during the course of problem solving.
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1. Calculate the penalty cost for each row and column. The penalty cost for 
each row is computed by subtracting the smallest cost in Ey (denoting the 
cell in i-th row and j-th column) in the row from the next smallest cost Ey 
value in the same row. Column penalty costs are obtained in the same 
way. These costs are the penalties for not selecting the minimum cell 
cost.

2. Select the row or column with the greatest penalty cost (breaking any ties 
arbitrarily). Allocates as much as possible to the cell Ey with the minimum 
value in the selected row or column. As a result, the largest penalties are 
avoided.

3. Adjust the supply and demand requirements to reflect the allocation(s) 
already made. Eliminate any rows and columns in which supply and 
demand have been exhausted.

4. If all supply and demand requirements have not been satisfied, go to the 
first step and recalculate new penalty costs. If all row and column values 
have been satisfied, the initial solution has been obtained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

111
Figure 6.12. Control structure

While (there is an applicable rule) or (there is no halt) Do 
Begin

if (all lines have zero amount)
Then halt

Else if (there is a line whose current value is zero)
Then Delete-line 

Else If (top) and (there is a line with only one blank cell)
Then Copy-allocation

Else
Begin

While (every undeleted line is associated with an opportunity) 
Begin

If (there is no calculated penalty)
Then First-cp 
Else Next-cp 

Calc-penalty 
End 

Select-line 
Select-cell
Determine-allocation-amount
Adjust-amount

End
End

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

112

From the above descriptions, this study identifies four principles 

underlying the procedure. These principles are shown in Figure 6.13. It may be 

the case that students who understand the above concepts well are able to 

derive an initial solution to a transportation problem without much difficulties. 

Their performance does not rely on rote procedures but meaningful procedures 

(Smith et al., 1989) because their performance rely on these principles. This 

study will demonstrate PSCD's capabilities with the example problem (see 

Figure 6.14) taken from Lee et al. (1990).

Figure 6.13. Four principles underlying the VAM procedure

1. The opportunity cost principle: We want to minimize the opportunity (i.e., 
regret or penalty) cost for selecting the wrong cell for an allocation. The 
motivation is to minimize the total allocation cost.

2. The least-cost allocation principle: We allocate to the cell with least cost 
in the selected row or column. The motivation is to minimize the total 
allocation cost.

3. Demand/supply requirements: We want to allocate all supply or demand 
in such a way that allocations do not violate requirements.

4. The order principle: This principle imposes an order in which problem 
solving proceeds. For instance, a line must be selected before selecting 
a cell.
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Figure 6.14. An example problem (adopted from Lee et al.,1990)

To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

70SUPPLY 1 12050

SUPPLY 2 70

SUPPLY 3 80 80

60 280Demand 150 70
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6.5.2 Principled and Procedural Knowledge of Transportation 

Problem Solving

In this section, PSCD is applied to transportation problem solving. The 

application is discussed in the following order: a representational language for 

transportation problems (Figure 6.15), a problem space including a set of 

operators and initial knowledge state (Figure 6.16), working memory elements 

for an example problem and initial procedural rules (Figure 6.17), and lastly 

state constraints (Figure 6.18).

A language for transportation problem solving consists of three types of 

entities, their associated properties, and two types of relations (Figure 6.15).

The entity 'line' designates a line in a transportation tableau and has properties 

of 'value', 'current-value', and 'status'. The value property and the current-value 

property of a line can be only a numerical value. The property status can take 

any one of values: nil, selected, or deleted. The value of the value property 

represents the amount to be allocated for a source or a destination. The value 

of the current-value property represents the allocable

Figure 6.15. A language for transportation problem solving

Types of entities
(a) lines: r1, r2, r3 c1, c2, c3....

properties: value, current-value, status
(b) cells: e11, e12, e13....

properties: parameter, value, status
(c) opportunities: op1, op2, op3.....

properties: first, second, value
Relations

(a) (partof e11 r1): The cell e11 is part of the line r1.
(b) (relate op1 r1): The opportunity op1 is related to the line r1.
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amount adjusted for the allocations which are already made. The status 

property contains information about whether the line is selected for an 

allocation or is deleted, the default value of the status property is nil, which 

means that any operation has not been performed on this line.

The entity 'cell' represents a cell in a transportation tableau and 

represents an allocation from a certain source to a destination. The cell entity 

has three properties: parameter, value, and status. The parameter property 

contains cost information, the value property represents an allocation amount 

assigned to that cell, and the status property represents whether that cell is 

selected, deleted, or nil (not deleted). The entity 'opportunity' keeps track of 

opportunities associated with lines. The opportunity has three properties: first, 

second, and value. The value of the property 'first' indicates the first cell 

selected for opportunity calculation. The value of the property 'second' 

indicates the second cell selected. The property 'value' contains the 

opportunity value calculated from two selected cells. The language for 

transportation problem solving includes two relations. The relation 'partof' 

specifies which cells belong to which lines. The relation 'relate' relates a line 

with an opportunity.

Figure 6.16 describes the initial knowledge state, operators, and the goal 

state which collectively determine a problem space for transportation problem 

solving. A transportation tableau is described with lines, cells, and their 

properties and relationships. There are nine operators operating in a problem 

space for transportation problem solving. The three of them, that are First-cp, 

Calc-penalty, and Next-cp, are operators that work for calculating penalties for 

lines. The operator Select-line selects a line, Select-cell selects a cell,

Determine-allocation-amount determines an appropriate allocation amount,
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and Adjust-amount adjusts current values of a row and of a column to reflect the 

allocated amount. Delete-line deletes a line. Copy-allocation copy a current 

value of a line and write the current value as an allocation for a blank cell. 

Operators are interchangeably called actions in the study because this set of 

operators are used to transcribe problem solving traces of students into action 

protocol (see Chapter 7). A operator has a set of arguments which are 

enclosed with parentheses. Arguments are prefixed with the symbol "=" to 

denote that they are variables. System related arguments which may not be 

easily comprehensible to readers are enclosed with brackets. For example, the 

operator First-cp has three arguments: =line, =op, and =op-list. It would be 

enough to understand the First-cp action with the information about the selected 

line =line. The rest arguments are system related arguments.

Figure 6.17 shows initial working memory elements for an example 

transportation problem and initial rules. The example problem has a tableau 

which three rows and three columns. Therefore there are nine cells in the 

problem. Each cell is defined as an instance of the 'cell' class. A cell is a part of 

a column line and a row line. For example, the cell e11 is a part of the column 

line c1 and also of the row line r1. The cell e11 has three properties: 

parameter, value, and status. The value of parameter property for the cell e11 is 

8, the value of value property is zero, and the value of status parameter is nil 

which means not deleted.

Figure 6.18 describes state constraints in terms of four principles. The 

opportunity principle consists of fourteen constraints. They are (a) an 

opportunity value must be calculated for a line which is not deleted, (b) consider 

only one line at a time, (c) consider only one opportunity at a time, (d) do not 

relate more than one opportunity with a line, (e) do not relate more than one line
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with an opportunity, (f) do not consider a line which is already associated with 

an opportunity, (g) a first cell of an opportunity must be part of a line which is 

associated with the opportunity, (h) a second cell of an opportunity must be part 

of a line which is associated with the opportunity, (i) a first cell of an opportunity 

must be a next-least cost cell in a line associated with the opportunity, (j) a 

second cell of an opportunity must be a least cost cell in a line associated with 

the opportunity, (k) A first cell of an opportunity must not be deleted, (I) a second 

cell of an opportunity must not be deleted, (m) select a line which has the 

largest opportunity value, and (n) select a line after all lines which are not 

deleted are associated with some opportunity. The principle of least cost 

allocations consists of two constraints: (a) select a cell which has a least cost 

and (b) select a larger current value of two lines of which a selected cell is part. 

The principle of demand-supply requirement consists of two constraints: (a) 

delete a line whose current value is zero and (b) a value of a line must be equal 

to a current value of the line plus total allocations made to the line. The order 

principle consists of five principles: (a) select a cell after a line is selected, (b) 

determine an allocation amount for a selected cell after the selection of line and 

cell, (c) adjust current values of lines given there is a determined amount, (d) 

delete a line with zero current value after adjustment, and (e) when all cells 

except one cell are deleted, do not calculate penalties.

Now the performance capability of PSCD are demonstrated with the 

example problem. The resulting output from PSCD is shown in Figure 6.19. A 

program trace in Figure 6.10 is the one randomly selected from the best 

possible paths that all can generate a correct solution. Each line that starts with 

the "#S" symbol represents a structured object showing information about a 

rule's name that are fired, instantiated actions, names of violated constraints,
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and the total number of violations until that stage. For example, the second 

instance in Figure 6.19 shows that the rule FIRST-CP is fired with instantiated 

actions ((‘ADD-DB (CONSIST-OF OPPORTUNITY (*PUSH G377 NIL))) (*DELETE-DB 

(CONSIST-OF opportunity nil)), there is no constraint violation from firing this 

instantiation, and the total number of violations until that state is zero. In the last 

instance, the total number of violations is zero. Hence the solution generated 

from this path is correct. This demonstrates that PSCD, with the defined set of 

constraints and rules, is sufficient to solve transportation problems.
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Figure 6.16. A problem space for transportation problem solving

The initial knowledge state
The initial knowledge state for transportation problem solving contains 
lines which represent rows and columns, cells and opportunities. A cell 
can be part of a row and a column and a line can be associated with a 
opportunity.

Operators
1. First-cp: focus on the line =line 

first-cp (=line [=op =op-list])
(*delete-db (top))
(*add-db (calc-penalty dine))
(*add-db (inst =op opportunity))
(*delete-db consist-of opportunity =op-list))
(*add-db (consist-of opportunity (*push =op =op-list))))

2. Calc-penalty: calculate a penalty for the line dine 
calc-penalty (dine [=op =cell-1 =par-1 =cell-2 =par-2])

(*add-db (relate =op =line))
(*add-db (first =op =cell-1))
(*add-db (second =op =cell-2))
(*add-db (value =op (*- =par-1 =par-2))))

3. Next-cp: change focus from =line2 to dinel 
next-cp (dinel dine2 [=op =op-list])

(*add-db (calc-penalty =line2))
(*delete-db (calc-penalty dinel))
(*add-db (inst =op opportunity))
(*delete-db (consist-of opportunity =op-list))
(*add-db (consist-of opportunity ('push =op =op-list))))

4. Select-line: select the line dine-a 
select-line (dine-a [dine-c])

(*add-db (allocate =line-a))
(*delete-db (calc-penalty dine-c)))

5. Select-cell: select the cell =cell 
select-cell ([=line] =cell [=op-list])
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Figure 6.16 (Continued)

(*delete-opportunity =op-list)
(*delete-db (allocate =line))
(*add-db (allocate =line =cell)))

6. Determine-allocation-amount: determine an amount =number to be
allocable

determine-allocation-amount ([=line =cell] =number)
(*add-db (allocate =line =cell =number))
(*delete-db (allocate =line =cell)))

7. Adjust-amount: allocate the determined amount to the selected cell
and adjust the amounts of related row =line-1 and column =line-2 

adjust-amount (=line-1 [=current:1] =line-2 [=current-2 =line =cell 
=number])
(*add-db (top))
(*delete-db (value =cell 0))
(*add-db (value =cell =number))
(*delete-db (current-value =line-1 =current-1))
(*add-db (current-value =line-1 (*- =current-1 =number))) 
(*delete-db (current-value =line-2 =current-2))
(*add-db (current-value =line-2 (*- =current-2 =number))) 
(*delete-db (allocate dine =cell =number)))

8. Delete-line: delete the line dine 
delete-line (dine [=cell-list])

(*delete-db (status dine nil))(*add-db (status =line deleted)) 
(*delete-cell =cell-list))

9. Copy-allocation: take the amount of line dinel and write the amount
on the cell =cell 

copy-allocation (dinel [=current1] =cell [=line2 =current2])
(*delete-db (current-value d ine l =current1))
(*add-db (current-value =line1 0))
(*delete-db (current-value =line2 =current2))
(*add-db (current-value =line2 (*- =current2 =current1))) 
(*delete-db (value =cell 0))(*add-db (value =cell =current1)))

Goal state : The goal is to reach a state in which all lines are deleted.
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Figure 6.17. Initial Working Memory and Rules

Working Memory Elements 
(consist-of line (c1 c2 c3 r1 r2 r3))
(inst rl Iine)(hasr1 (e11 e12 e13))(value r1 120) 
(current-value r1 120)(status r1 nil)
(inst r2 line)(has r2 (e21 e22 e23))(value r2 80) 
(current-value r2 80)(status r2 nil)
(inst r3 line)(has r3 (e31 e32 e33))(value r3 80) 
(current-value r3 80)(status r3 nil)
(instcl Iine)(hasc1 (e11 e21 e31 ))(value c1 150) 
(current-valued 150)(statusc1 nil)
(inst c2 line)(has c2 (e12 e22 e32))(value c2 70) 
(current-value c2 70)(status c2 nil)
(inst c3 line)(has c3 (e13 e23 e33))(value c3 60) 
(current-value c3 60)(status c3 nil)
(consist-of cell (e11 e12 e13 e21 e22 e23 e31 e32 e33))
(inst e11 cell)(parameter e11 8)(value e11 0)(status e11 nil) 
(partof e11 r1 )(partof e11 d )
(inst e12 cell)(parameter e12 5)(value e12 0)(status e12 nil) 
(partof e12 r1)(partof e12 c2)
(inst e13 cell)(parameter e13 6)(value e13 0)(status e13 nil) 
(partof e13 r1)(partof e13 c3)
(inst e21 cell)(parameter e21 15)(valuee21 0)(statuse21 nil) 
(partof e21 r2)(partof e21 c l)
(inst e22 cell)(parameter e22 10)(value e22 0)(status e22 nil) 
(partof e22 r2)(partof e22 c2)
(inst e23 cell)(parameter e23 12)(value e23 0)(status e23 nil) 
(partof e23 r2)(partof e23 c3)
(inst e31 cell)(parameter e31 3)(value e31 0)(status e31 nil) 
(partof e31 r3)(partof e31 d )
(inst e32 cell)(parameter e32 9)(value e32 0)(status e32 nil) 
(partof e32 r3)(partof e32 c2)
(inst e33 cell)(parameter e33 10)(value e33 0)(status e33 nil) 
(partof e33 r3)(partof e33 c3) (consist-of opportunity nil)
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Figure 6.17. (Continued)
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Rules
1. (inst =line line)(top)
(consist-of opportunity =op-list)(bind =op (gensym)); enable action 
= = >

first-cp (=line =op =op-list)
2. (inst =line1 line)(calc-penalty =line1)(inst =line2 line)(*no (top))
(*no ('equal =line1 =line2))
(relate =some dinel )(*no (relate =some =line2))
(consist-of opportunity =op-list)(bind =op (gensym))
= = >

next-cp (=line1 =line2 =op =op-list)
3. (inst =line line)(calc-penalty dine)(*no (top))
('no (relate =some dine))
(inst =op opportunity)(*no (relate =op =some)): added heuristic 
(inst =cell-1 cell)(inst =cell-2 cell)(*no ('equal =cell-1 =cell-2))
(parameter =cell-1 =par-1)(parameter =cell-2 =par-2)
(partof =cell-1 =line)(partof =cell-2 =line)
= = >

calc-penalty (dine =op =cell-1 =par-1 =cell-2 =par-2)
4. (top)(inst d ine l line)(current-value dinel =current1)(status =line1 nil) 
('no ('equal ^current O))(partof =cell dinel )(status =cell nil)(value =cell 0) 
(has d inel dist)(*only-one status nil d is t); added heuristic
(inst dine2 line)(partof =cell dine2)(*no ('equal dinel dine2)) 
(current-value =line2 =current2)
= = >

copy-allocation (dinel =current1 =cell =line2 =current2)
5. (inst dinel !ine)(status dinel nil)
(inst =op opportunity)(relate =op dinel)
(inst dine2 line)(calc-penalty =line2)
= = >

select-line (=line-a dine-c)
6. (inst =line line)(inst =cell cell)(allocate =line)(partof =cell =line) 
(consist-of opportunity =op-list)
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Figure 6.17. (Continued)
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= = >

select-cell (=line =cell =op-list)
7. (inst =cell cell)(allocate =cell)
(inst =line-1 line)(partof =cell dine-1)(current-value =line-1 =current1) 
(inst =line-2 line)(partof =cell =line-2)(current-value =line-2 =current2) 
(*no (*equal =line-1 dine-2))
= = >

determine-allocation-amount (=!ine =cell =current-1)
8. (inst =cell cell)(allocate =cell =number)(*numberp =number)
(inst =line-1 line)(partof =cell =line-1)(current-value =line-1 =current1) 
(inst =line-2 line)(partof =cell dine-2)(current-value =line-2 =current2) 
(*no (*equal =line-1 =line-2))
= = >

adjust-amount (=line-1 =current-1 =line-2 =current-2 =line =cell =number)
9. (top)(inst =line line)(current-value =line 0)(status =line nil)
(has dine =cell-list)
= = >

delete-line (dine =cell-list)
10. consist-of line dist)(*every status deleted =list)(top)
= = >

(*add-db (halt))
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A. OPPORTUNITY PRINCIPLE
1. An opportunity value must be calculated for a line which is not deleted, 
(opportunity-line-not-deleted.
(inst =line line)(calc-penalty dine)
“  (status dine nil))
2. Consider only one line at a time.
(consider-one-line
(inst d inel line)(calc-penalty dinel)
(inst dine2 line)(calc-penalty dine2)(*no (‘ equal d ine l =line2))
“  nil)
3. Consider only one opportunity at a time.
(consider-one-opportunity
(calc-penalty =line)(inst =op1 opportunity)(inst =op2 opportunity)
(‘ no (relate =op1 =some))(*no (relate =op2 =some))(*no (‘ equal =op1 
=°p2))
“  nil)
4. Do not relate more than one opportunity with a line, 
(relate-one-opp-with-one-line
(calc-penalty =line)(inst =op1 opportunity)(relate =op1 dine)
(inst =op2 opportunity)(relate =op2 dine)(*no (‘equal =op1 =op2))
“  nil)
5. Do not relate more than one line with an opportunity, 
(relate-one-line-with-one-opp
(calc-penalty d inel )(inst dine2 line)(relate =op d ine l)
(relate =op dine2)(*no (‘ equal dinel dine2))
“  nil)
6. Do not consider a line which is already associated with an opportunity, 
(do-not-consider-line-with-op
(calc-penalty =line)(relate =op1 dine)
(inst =op2 opportunity)(*no (relate =op2 =some))(*no (‘ equal =op1 =op2)) 
“  nil)
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Figure 6.18. (Continued)

7. A first cell of an opportunity must be part of a line which is associated 
with the opportunity.
(first-opportunity-same-line
(inst =line line)(calc-penalty =line)(relate =op dine)
(inst =cell cell)(first =op =cell)
“  (partof =cell =line))
8. A second cell of an opportunity must be part of a line which is associated 
with the opportunity.
(second-opportunity-same-line
(inst dine Iine)(calc-penalty =line)(relate =op dine)
(inst =cell cell)(second =op =cell)
“  (partof =cell =line))
9. A first cell of an opportunity must be a next-least cost cell in a line 
associated with the opportunity.
(opportunity-first-nextleast
(inst dine line)(calc-penalty dine)(relate =op dine)
(inst =cell-1 cell)(first =op =cell-1)(has dine =cetl-list)
“  (‘ nextleast parameter =cell-1 (‘ remove-deleted =cell-list)))
10. A second cell of an opportunity must be a least cost cell in a line 
associated with the opportunity.
(opportunity-second-least
(inst dine line)(calc-penalty =line)(relate =op dine)
(inst =cell-2 cell)(second =op =cell-2)(has dine =cell-list)
“  (‘ least parameter =cell-2 (‘ remove-deleted =cell-list)))
11. A first cell of an opportunity must not be deleted, 
(first-opportunity-cell-not-deleted
(inst =op opportunity)(calc-penalty dine)(relate =op dine)
(inst =cell-1 cell)(inst =op opportunity)(first =op =cell-1)
“  (status =cell-1 nil))
12. A second cell of an opportunity must not be deleted, 
(second-opportunity-cell-not-deleted
(inst =op opportunity)(calc-penalty =line)(relate =op =line)
(inst =cell-2 cell)(inst =op opportunity)(second =op =cell-2)
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Figure 6.18. (Continued)

"  (status =cell-2 nil))
13. Select a line which has the largest opportunity value, 
(select-largest-opportunity-line
(inst =line line)(allocate =line)(relate =op dine)
('no (calc-penalty =some))
(consist-of opportunity =op-list)('every value =some =op-list)
"  ('largest value =op =op-Iist»
14. Select a line after all lines which are not deleted are associated with 
some opportunity.
(select-line-after-all-opportunities 
(inst =line-1 line)(allocate =line-1)
(inst =line line)(status dine nil)(*no (relate =some dine))
"  nil)

B. LEAST COST ALLOCATIONS
1. Select a cell which has the least cost.
(select-least-cost-cell
(inst =cell cell)(inst dine line)(allocate dine =cell)(has dine =cell-list)
"  ('least parameter =cell ('remove-deleted =cell-list)))
2. Select a larger current value of two lines of which a selected cell is part, 
(select-maximum-amount-for-allocation
(inst =cell celi)(allocate =cell =number)('numberp =number)
(partof =cell dine-1)(partof =cell dine-2)(*no ('equal dine-1 =line-2)) 
(current-value dine-1 =val-1)(current-value dine-2 =val-2)(*<= =val-1 =val- 
2)
"  ('equal =number =val-1))

C. DEMAND SUPPLY REQUIREMENT
1. Delete a line whose current value is zero, 
(deleted-line-when-all-amount-allocated
(inst dine line)(has dine =cell-list)(status =line deleted)
(value dine =value)(*no ('equal ('total value =cell-list) =value))
"  nil)
2. A value of a line must be equal to a current value of the line plus total 
allocations made to the line.
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Figure 6.18. (Continued)

(val ue=total+cu rrent
(inst dine line){has =line =cell-list)(current-value dine =current-value) 
(value =line =value)
(‘ no (‘ equal =value (*+ (‘ total value =cell-list) =current-value)))
“  nil)

D. ORDER PRINCIPLE
1. Select a cell after a line is selected.
(select-cell-after-select-line
(inst =cell cell)(allocate =cell)
(inst =line line)(or (calc-penalty =some)(allocate =line)(allocate =some 
=n umber))
“  nil)
2. Determine an allocation amount for a selected cell after the selection of 
line and cell.
(determine-amount-after-select-line/cell
(inst =cell cell)(allocate =cell =amount)(*numberp =amount)
(or (calc-penalty =some)(allocate =some))
“  nil)
3. Adjust current values of lines given there is a determined amount, 
(adjust-amount-after-determine
(inst =line line)(current-value =line 0)(status =line nil)
(or (allocate =some)(allocate =some =amount)(calc-penalty =some))
“  nil)
4. Delete a line with zero current value after adjustment, 
(delete-line-after-adjust
(inst =line line)(‘ no (top))(current-value =line 0)(*no (status dine deleted)) 
“  nil)
5. When all cells except one cell are deleted, do not calculate penalties, 
(prefer-copy-over-calc-penalty
(inst dine line)(current-value dine =current)(status dine nil)
(‘ no (‘ equal =current 0))(partof =cell dine)(status =cell nil)
(has dine dist)(*only-one status nil dist)
“  (‘ no (calc-penalty =some)))
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Figure 6.19. A program trace for the example problem

#S(INSTANCE RULE START ACTIONS NIL VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE FIRST-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G377 NIL))) (‘DELETE-DB (CONSIST-OFOPPORTUNITY NIL)) (‘ADD-DB (INST G377 
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY R1)) (‘DELETE-DB (TOP))) VIOLATIONS NIL 
TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G377 (*- 6 5))) (‘ADD-DB 
(SECOND G377 E12)) (‘ADD-DB (FIRST G377 E13)) (‘ADD-DB (RELATE G377 R1))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G396 (G377)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G377))) (‘ADD-DB (INST G396 
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C1)) (‘DELETE-DB (CALC-PENALTY R1))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G392 (*- 9 3))) (‘ADD-DB 
(SECOND G392 E31)) (‘ADD-DB (FIRST G392 E32)) (‘ADD-DB (RELATE G392 R3))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G262 (G392 G377)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G392 G377))) (‘ADD-DB 
(INST G262 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C1)) (‘DELETE-DB (CALC-PENALTY 
R3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G262 (*- 8 3))) (‘ADD-DB 
(SECOND G262 E31)) (‘ADD-DB (FIRST G262 E11)) (‘ADD-DB (RELATE G262C1))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G242 (G262 G392 G377)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G262 G392 G377))) 
(‘ADD-DB (INST G242 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C2)) (‘DELETE-DB (CALC- 
PENALTY C1))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G242 (*- 9 5))) (‘ADD-DB 
(SECOND G242 E12)) (‘ADD-DB (FIRST G242 E32)) (‘ADD-DB (RELATE G242 C2))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G253 (G242 G262 G392 G377)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G242 G262 
G392 G377))) (‘ADD-DB (INST G253 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C3)) 
(‘DELETE-DB (CALC-PENALTY C2))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G253 (*-10 6))) (‘ADD-DB 
(SECOND G253 E13)) (‘ADD-DB (FIRST G253 E33)) (‘ADD-DB (RELATE G253 C3))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE SELECT-LINE ACTIONS ((‘ADD-DB (ALLOCATE R3)) (‘DELETE-DB 
(CALC-PENALTY C3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE SELECT-CELL ACTIONS ((‘DELETE-DB (ALLOCATE R3)) (‘ADD-DB 
(ALLOCATE R3 E31)) (‘DELETE-OPPORTUNITY (G253 G242 G262 G392 G377 G366))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE DETERMINE-ALLOCATION-AMOUNT ACTIONS ((‘DELETE-DB 
(ALLOCATE E31)) (‘ADD-DB (ALLOCATE E31 80))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ADJUST-AMOUNT ACTIONS ((‘DELETE-DB (ALLOCATE E31 80)) (‘ADD- 
DB (CURRENT-VALUE C1 (*-150 80))) (‘DELETE-DB (CURRENT-VALUE C1 150)) (‘ADD-DB 
(CURRENT VALUE R3 (*- 80 80))) (‘DELETE-DB (CURRENT-VALUE R3 80)) (‘ADD-DB (VALUE 
E31 80)) (‘DELETE-DB (VALUE E31 0)) (‘ADD-DB (TOP))) VIOLATIONS NIL TOTAL 0) 
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E31 E32 E33)) (‘ADD-DB 
(STATUS R3 DELETED)) (‘DELETE-DB (STATUS R3 NIL))) VIOLATIONS NIL TOTAL 0) 
#S(INSTANCE RULE FIRST-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G275 NIL))) (‘DELETE-DB (CONSIST-OFOPPORTUNITY NIL)) (‘ADD-DB (INST G275 
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY R2)) (‘DELETE-DB (TOP))) VIOLATIONS NIL 
TOTAL 0)
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Figure 6.19. (Continued)

#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G275 (*-12 10))) (‘ADD-DB 
(SECOND G275 E22)) (‘ADD-DB (FIRST G275 E23)) (‘ADD-DB (RELATE G275 R2))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G286 (G275)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G275))) (‘ADD-DB (INST G286 
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY R1)) (‘DELETE-DB (CALC-PENALTY R2))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G286 (*- 6 5))) (‘ADD-DB 
(SECOND G286 E12)) (‘ADD-DB (FIRST G286 E13)) (‘ADD-DB (RELATE G286 R1))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G297 (G286 G275)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G286 
G275))) (‘ADD-DB (INST G297 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C3)) (‘DELETE-DB 
(CALC-PENALTY R1))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G297 (*-12 6))) (‘ADD-DB 
(SECOND G297 E13)) (‘ADD-DB (FIRST G297 E23)) (‘ADD-DB (RELATE G297 C3))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G308 (G297 G286 G275)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G297 G286 G275))) 
(‘ADD-DB (INST G308 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C2)) (‘DELETE-DB (CALC- 
PENALTY C3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G308 (*-10 5))) (‘ADD-DB 
(SECOND G308 E12)) (‘ADD-DB (RRST G308 E22)) (‘ADD-DB (RELATE G308 C2))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNrTY (‘PUSH 
G326 (G308 G297 G286 G275)))) (‘DELETE-DB (CONSIST-OF OPPORTUNrTY (G308 G297 
G286 G275))) (‘ADD-DB (INST G326 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C1)) 
(‘DELETE-DB (CALC-PENALTY C2))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G326 (*- 15 8))) (‘ADD-DB 
(SECOND G326 E11)) (‘ADD-DB (RRST G326 E21)) (‘ADD-DB (RELATE G326 C1))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE SELECT-LINE ACTIONS ((‘ADD-DB (ALLOCATE C1)) (‘DELETE-DB 
(CALC-PENALTY C1))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE SELECT-CELL ACTIONS ((‘DELETE-DB (ALLOCATE C1)) (‘ADD-DB 
(ALLOCATE E11)) (‘DELETE-OPPORTUNITY (G326 G308 G297 G286 G275))) VIOLATIONS 
NIL TOTAL 0)
#S(INSTANCE RULE DETERMINE-ALLOCATION-AMOUNT ACTIONS ((‘DELETE-DB 
(ALLOCATE E11)) (‘ADD-DB (ALLOCATE E11 70))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ADJUST-AMOUNT ACTIONS ((‘DELETE-DB (ALLOCATE E11 70)) (‘ADD- 
DB (CURRENT-VALUE R1 (*-120 70))) (‘DELETE-DB (CURRENT-VALUE R1 120)) (‘ADD-DB 
(CURRENT-VALUE C1 (*- 70 70))) (‘DELETE-DB (CURRENT-VALUE C1 70)) (‘ADD-DB (VALUE 
E11 70)) (‘DELETE-DB (VALUE E11 0)) (‘ADD-DB (TOP))) VIOLATIONS NIL TOTAL 0) 
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E11 E21 E31)) (‘ADD-DB 
(STATUS C1 DELETED)) (‘DELETE-DB (STATUS C1 NIL))) VIOLATIONS NIL TOTAL 0) 
#S(INSTANCE RULE RRST-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G354 NIL))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY NIL)) (‘ADD-DB (INST G354 
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C2)) {‘DELETE-DB (TOP))) VIOLATIONS NIL 
TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G354 (*-10 5))) (‘ADD-DB 
(SECOND G354 E12)) (‘ADD-DB (RRST G354 E22)) (‘ADD-DB (RELATE G354 C2))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G359 (G354)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G354))) (‘ADD-DB (INST G359 
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C3)) (‘DELETE-DB (CALC-PENALTY C2))) 
VIOLATIONS NIL TOTAL 0)
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Figure 6.19. (Continued)

#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G359 (*-12 6))) (‘ADD-DB 
(SECOND G359 E13)) (‘ADD-DB (FIRST G359 E23)) (‘ADD-DB (RELATE G359 C3))) 
VIOLATIONS NIL TOTAL 0)
^(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G364 (G359 G354)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G359 G354))) (‘ADD-DB 
(INST G364 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY R1)) (‘DELETE-DB (CALC-PENALTY 
C3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G364 (*- 6 5))) (‘ADD-DB 
(SECOND G364 E12)) (‘ADD-DB (FIRST G364 E13)) (‘ADD-DB (RELATE G364 R1))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH 
G369 (G364 G359 G354)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G364 G359 G354))) 
(‘ADD-DB (INST G369 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY R2)) (‘DELETE-DB (CALC- 
PENALTY R1))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G369 (*-12 10))) (‘ADD-DB 
(SECOND G369 E22)) (‘ADD-DB (FIRST G369 E23)) (‘ADD-DB (RELATE G369 R2))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE SELECT-LINE ACTIONS ((‘ADD-DB (ALLOCATE C3)) (‘DELETE-DB 
(CALC-PENALTY R2))) VIOLATIONS NIL TOTAL O)
#S(INSTANCE RULE SELECT-CELL ACTIONS ((‘DELETE-DB (ALLOCATE C3)) (‘ADD-DB 
(ALLOCATE E13)) (‘DELETE-OPPORTUNITY (G369 G364 G359 G354))) VIOLATIONS NIL 
TOTAL 0)
#S(INSTANCE RULE DETERMINE-ALLOCATION-AMOUNT ACTIONS ((‘DELETE-DB 
(ALLOCATE E13)) (‘ADD-DB (ALLOCATE E13 50))) VIOLATIONS NIL TOTAL 0)
#S( INSTANCE RULE ADJUST-AMOUNT ACTIONS ((‘DELETE-DB (ALLOCATE E13 50)) (‘ADD- 
DB (CURRENT-VALUE R1 (‘- 50 50))) (‘DELETE-DB (CURRENT-VALUE R1 50)) (‘ADD-DB 
(CURRENT-VALUE C3 (*- 60 50))) (‘DELETE-DB (CURRENT-VALUE C3 60)) (‘ADD-DB (VALUE 
E13 50)) (‘DELETE-DB (VALUE E13 0)) (‘ADD-DB (TOP))) VIOLATIONS NIL TOTAL 0) 
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E11 E12 E13)) (‘ADD-DB 
(STATUS R1 DELETED)) (‘DELETE-DB (STATUS R1 NIL))) VIOLATIONS NIL TOTAL 0) 
#S(INSTANCE RULE COPY-ALLOCATION ACTIONS ((‘ADD-DB (VALUE E23 10)) (‘DELETE- 
DB (VALUE E23 0)) (‘ADD-DB (CURRENT-VALUE R2 (*- 80 10))) (‘DELETE-DB (CURRENT- 
VALUE R2 80)) (‘ADD-DB (CURRENT-VALUE C3 0)) (‘DELETE-DB (CURRENT-VALUE C3 10))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE COPY-ALLOCATION ACTIONS ((‘ADD-DB (VALUE E22 70)) (‘DELETE- 
DB (VALUE E22 0)) (‘ADD-DB (CURRENT-VALUE R2 (*- 70 70))) (‘DELETE-DB (CURRENT- 
VALUE R2 70)) (‘ADD-DB (CURRENT-VALUE C2 0)) (‘DELETE-DB (CURRENT-VALUE C2 70))) 
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E21 E22 E23)) (‘ADD-DB 
(STATUS R2 DELETED)) (‘DELETE-DB (STATUS R2 NIL))) VIOLATIONS NIL TOTAL 0) 
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E13 E23 E33)) (‘ADD-DB 
(STATUS C3 DELETED)) (‘DELETE-DB (STATUS C3 NIL))) VIOLATIONS NIL TOTAL 0) 
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E12 E22 E32)) (‘ADD-DB 
(STATUS C2 DELETED)) (‘DELETE-DB (STATUS C2 NIL))) VIOLATIONS NIL TOTAL 0)
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6.6 Summary

In this chapter, PSCD is formally presented. PSCD is based on problem 

space representation, and consists of three components: productions, state 

constraints, and a strengthening process. PSCD is applied to a counting task 

as an initial validation of its performance ability, and to a transportation problem 

which is a main task of this study. PSCD is shown to be sufficient to perform a 

transportation problem solving as well as counting.
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Chapter 7 VALIDATION OF THE MODEL

7.1 Validation Methodology

The validation methodology employed in this study is the criterion of 

sufficiency (Newell, 1973a; Ohlsson and Rees, 1991). Newell (1973a) 

observed two constructions that had dominated in traditional psychology 

experimental studies: (a) at a low level, the discovery and empirical exploration 

of phenomena and (b) at the middle level, the formulation of questions to be put 

to nature that center on the resolution of binary oppositions. Newell argued that 

experimental studies at the low and middle level typically tried to formulate a 

local theory from observing phenomena and attempted with local methods to 

falsify the theory or provide evidence for the failure of falsification. What is 

missing, it is argued, is a frame that constrains what other methods might also 

be evoked to perform the same task. In short, they did not consider the total 

method which would model the control structure as well. Newell argued for the 

development of a grand theory which might be driven by general concerns such 

as exploring learning or development.

Newell (1973a) suggested three strategies for developing a high level of 

grand theory. The first was to build complete processing models for individual 

tasks. Simulations must specify the detailed control structure and detailed 

assumptions about memories and elementary processes, and must be sufficient " 

to reproduce data. This sufficiency criterion reduces the degrees of freedom 

that allow so many models to coexist with the same data. Newell's second 

suggestion was to analyze a complex task and do all of it. The aim is to 

demonstrate that one has a sufficient theory of human behavior. Again the aim 

was to reduce the range of possible models consistent with the data, in this 

case by increasing the amount and variety of data for which the models must
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account. The third suggested strategy is to build a complete processing model 

that perform many complex tasks.

In his recent book, Newell (1990) elaborates on his position about the 

grand theory approach and further argues that building a large scale program 

which would put together and synthesize our existing understanding of 

cognition will provide a new way for psychology to leap forward. Newell 

explains his position for unified theories of cognition as follows:

The task at hand is to try to get some candidate theories that have a large 
enough scope in order to get the gains inherent in such unification, and 
to show us all that they are real. The task is somehow to cajole ourselves 
into putting it all together, even though we don't know many of the 
mechanisms that are operating. The long run can be entrusted to take 
care of the eventual emergence of a single unified theory and how that 
convergence or selection will take place. (Newell, 1990, p. 17)

Newell continues to argue that:

If there is any property that a theory of cognition must explain it is how 
intelligence is actually possible. Necessary characteristics are well and 
good, but they are substantially less than half the story. Sufficiency is all- 
important. Intelligence itself is a sufficiency of capability. To be 
intelligent is to be able to do certain things.... (Newell, 1990, p. 158)

From these remarks, it can be said that the objective of building a large scale

program is to show that it is indeed capable of doing certain things that are wide

in scope. Newell's arguments for the grand theory and the sufficiency criterion

actually have a root in his belief of what a theory is.

According to Newell (1990), a theory is some body of explicit knowledge,

from which answers can be obtained to questions by inquiries. Some answers

might be predictions, some might be explanations, some might be prescriptions
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for control. If this body of knowledge yields answers to those questions, it can 

be called a theory. The essential role of a theory, be it just a collection of facts 

or the fundamental axioms of a subject matter, is to provide needed answers. 

Newell then defined a theory as an explicit body of knowledge, from which 

answers can be obtained by anyone skilled in the art. From this perspective, 

Newell explained properties associated with a theory. Theories are not objects 

of discrimination, but of approximation. Theories cannot be absolute because 

the world can't be known with absolute certainty. Rather theories approximate 

the truth in nature. Usefulness often traded off against truth. Theories that are 

known to be wrong continue to be used, because they are the best available, for 

instance Fitts' law. Theories are treated as a tool to be used for some externally 

useful purpose. Theories cumulate. They are refined and reformulated, 

corrected and expanded. Theories are not just falsified but refined and 

expanded.

Newell's position about a theory and a methodology can be summarized 

as follows. The role of a theory lies in its usefulness as well as its truth. We 

must build a large-scale program which integrates as many known things as 

possible, and demonstrate that it is sufficient to perform diverse and complex 

tasks. Doing this way yields several benefits: bearing more constraints; 

increase in identifiability; avoiding irrelevant-specification problem; and 

allowing practical application (Newell, 1990, pp. 21-23). His formulation can 

solve such methodological problems as identifiability and irrelevant- 

specification problems and also opens a way for application. His formulation 

merits attention, at least from cognitive scientists who have applications in mind, 

not only because of its methodological advantages but also because of its 

possibilities for application.
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Although Newell's formulation has received wide acceptance (Anderson, 

1983; VanLehn, 1991), Simon (1989) pointed out that we still needed the 

collection and analysis of empirical data to help us decide alternative models of 

performance and to eventually find a small set of basic mechanisms underlying 

more comprehensive models. Simon contrasted alternative research styles: 

Newell’s style which prefers top-down theory construction from a hypothesis 

about the control system to build a highly homogeneous cognitive mechanism, 

and the position of traditional experimental psychologists who prefers bottom- 

up construction from careful quantitative observation of phenomena to build a 

specialized component for performing a particular range of tasks. Although 

Simon agreed on the difficulties of resolving conflicting empirical data soon and 

arriving at a unified picture of the HIP system just with specialized components, 

he argued that we must recognize usefulness of empirical data in generating 

quantitative invariants on which such a unified system must be based. What 

Simon says is that the necessary criterion also counts.

Simon's observation on contrasting methodologies has similar 

repercussions of Miller's account (Miller, 1978). Miller differentiated two 

competing methodologies, theory demonstration and theory development. 

Theory demonstration is concerned with validating a theory through empirical 

data, whereas theory development involves building a theory into a computer 

model and showing that the theory is sufficient to account for the phenomenon 

under study. In addition to these two competing methodologies, there can be 

some other types of methodologies that have been used in Al studies.

Hall and Kibler (1985) described and organized Al methodologies into 

five categories (Figure 7.1). They used two dimensions for classifying Al 

methodologies. The first of two dimensions is artificiality of the computational
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mechanisms under study. The issue of the artificiality differentiates Al studies 

which are undertaken with the intent of exploring human cognitive phenomena 

from studies of intelligent functioning by any computational mechanisms 

possible. The second that can differentiate differing methodologies is the 

generality of reasoning methods sought. This dimension of generality 

distinguishes between studies of developing computation techniques for a 

specific applications and research aimed at discovering general reasoning 

mechanisms. They recognized that the classification by these two dimensions 

could be incompletely filled because they could not find a study that could fit the 

cell formed by specific reasoning mechanisms and human cognitive 

phenomena, and also admitted that the some of Al studies would not be 

unambiguously categorized under the proposed classification scheme because 

researchers usually shifted between and shared differing perspectives. Even 

with these seemingly ambiguity and inexactness, Hall and Kibler's classification 

appeals to be of great value in understanding differing methodologies and also 

in positioning our study in an appropriate perspective from the total picture of Al 

methodologies.

Viewing from the perspective of Hall and Kibler's categorization, this 

study can be put under the "natural" category because this study follows the 

traditions of cognitive modeling. Under the label of natural, there are two 

subcategories: empirical and speculative. The empirical study typically 

demonstrates correspondence between behavior of artificial and natural 

systems, whereas the speculative study presents an analysis of natural 

intelligence but does not make rigorous efforts to demonstrate empirical 

evidence for correspondence between artificial and natural systems. This study 

is empirical to the extent that PSCD is demonstrated to show its abilities to
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perform and to make diagnosis in the same way as shown in empirical data. 

This study is also speculative to the extent that it does not validate but simply 

accepts the hypothesis that symbolic search space (Newell and Simon, 1972; 

Newell, 1990) is the right paradigm in the domain of management science as

Figure 7.1. Hall and Kibler's (1985, p. 171) typology

(Artificiality)

Artificial

(Generality )

NaturalPrinciples

Uerificiation)(Direction)

Performance constructive Formal EmpiricialSpeculative
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well, and that bugs that can be found in transportation problem solving are 

mainly originated from students' attempts to derive procedures from inadequate 

conceptual knowledge as in bugs found in the domain of counting and 

arithmetics (Resnick, 1982,1983; Greeno et al., 1984; Ohlsson and Rees,

1991). This study is empirical in some parts and speculative in other aspects. 

Although Hall and Kibler's classification scheme is not able to position our study 

unambiguously in one perspective, their scheme is still of value because this 

study's methodological perspectives can be explicitly stated with their scheme.

With Simon's (1989) distinction between top-down and bottom-up 

constructions, these two perspectives may be added as subcategories under 

the empirical category. This study approaches the problem in the top-down 

fashion. This study initially delineates the functional architecture, PSCD, for 

cognitive diagnosis with heavy reliance on previous works (Langley, 1985; 

Langley et al., 1990; Anderson, 1983, 1989; Newell, 1990; Gelman and Meek, 

1986; Ohlsson and Rees, 1991; Greeno et al., 1984). Most cognitive theories 

are built into PSCD. Then PSCD is applied to transportation problem solving 

tasks to demonstrate its capabilities of performance and diagnosis.

7.2 Data Collection

Data are problem-solving traces of students. Collected data are used to 

be compared with PSCD's problem solving traces and also to test PSCD for its 

ability to make correct diagnosis given students' incorrect traces. A test with 

three transportation problems (see Figure 7.2) was made and given to students 

as a class quiz. All problems required students to derive initial solutions by the 

VAM method. Before giving the quiz, instructors explained the concepts
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underlying the VAM method and gave an example of it. Right after this 

instruction, the quiz was distributed to students. Students were asked to show

Figure 7.2. Transportation problems

Problem 1. Set up the initial table by URM method

To
Fromx\ v̂ DEMAND 1 DEMAND 2 DEMAND 3 Supply

SUPPLV 1
8 5 6

120

SUPPLV 2
15 10 12

80

SUPPLY 3
3 9 10

80

Demand 150 70 60 280
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Figure 7.2. (Continued)

Problem 2. Set up the initial table by URM method

DEMAND 1 DEMAND 2 DEMAND 3 DEMAND 4

SUPPLY 1
1 0 0 20 1 1

20

SUPPLY 2
12 7 9 20

10

SUPPLY 3
0 14 16 18

•

J

5 15 15 10

Problem 3. Set up the initial table by URM method

DEMAND 1 DEMAND 2 DEMAND 3 DEMAND 4

SUPPLY 1
12 10 9 15

36

SUPPLY 2
10 8 2 10

25

SUPPLY 3
9 5 15 8

30

SUPPLY 4
0 0 0 0

30

26 40 25 30
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each solution steps explicitly. In order to provide enough space for them to 

write every steps additional blank transportation tableau were provided to each 

problem. Students were urged to finish the quiz and to use any procedure that 

would make sense to them even if their understanding of the VAM method was 

minimal. Students were informed that the quiz counted on their grades and 

asked to do their best.

The quiz was administered in three classes of MGT 245. Since MGT 

245 is the introductory course of management science, it is assumed that 

students do not have general background knowledge of management science 

that can be transferred and used in transportation problem solving. In other 

words, it is assumed that student errors arise only from incomplete 

understanding of principles of transportation problem solving, not from buggy 

procedures that result from attempts of using similar knowledge of management 

science (e.g., Linear Programming). Data from the first class were largely used 

for tuning PSCD's working memory elements, rules, and constraints that were 

initially developed from the description of the VAM method in the textbook (Lee 

et al., 1990). The number of data items (i.e., number of answer sheets that show 

incorrect solutions) collected from the other two classes was 38. The next 

section presents the results of the analysis and explanations.

7.3 Results and Explanations

Reviewing the data revealed error patterns that can be usefully grouped 

in terms of violations of state constraints. In order to keep the discussion 

focused, this study will use the first problem in the quiz to illustrate five cases. 

The first step was to translate problem solving traces shown in answer sheets 

into action protocol. An action is a list which has the name of action as the first
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element and a set of arguments that follows the name. Arguments of each 

operator show the specific instantiation (i.e., variable bindings) of the operator. 

For example, in Figure 7.3 the first action in the action protocol is (first-cp r1 op1 

nil). The action shows that a student takes the r1 as the first line to calculate a 

penalty.

Figure 7.3 shows the partial answer in the form of transportation tableau, 

the action protocol of subject-1, and diagnosis results of PSCD. Each iteration 

of VAM procedure is separated by a dotted line to make the protocol more 

readable. The action protocol is the input to PSCD and PSCD generates a 

report showing violated constraints, if any. The report generated by PSCD is 

edited and shown in the context of the original action protocol. Lists which have 

constraint names in capital letters show violated constraints of the respective 

state. Subject-1 appears to have difficulties in in applying two constraints, 

FIRST-OPPORTUNITY-CELL-NOT-DELETED and OPPORTUNITY-FIRST- 

NEXTLEAST, during his problem solving process. Apparently these two 

constraints were not considered when they should have been. His error is 

calculating penalties with deleted cells. Curiously he did not violate these 

constraints at the first iteration but committed violations at the consecutive two 

iterations. Given this apparent inconsistency, it may be argued that this error is 

not related to principled understanding but can be viewed as just a slip. Some 

researchers argued for slips as the main cause of most errors (Anderson and 

Jeffries, 1985), and others distinguished mistakes from slips and attempted to 

model the process that might cause mistakes (Brown and VanLehn, 1980). Yet 

it is also argued that the distinction between slips and mistakes may not be as 

clear as expected (Payne and Squibb, 1990).
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Figure 7.3. The action protocol of subject-1
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To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

SUPPLV 1 120

80SUPPLY 2

SUPPLV 3 8080

60 280Demand 70150

©  4  4
( 1 5 - 8 )  ( 9 - 5 )  ( 1 0 - 6 )

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 ’op2 ’e23 12 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1))
(calc-penalty 'r3 ’op3 'e32 9 'e31 3)
(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 'op4 'e11 8 'e31 3)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e32 9 'e12 5)
(next-cp ’c2 ’c3 ’op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 'op6 'e33 10 'e13 6)
(select-line 'r3 ’c3)
(select-cell 'r3 'e31 '(op6 op5 op4 op3 op2 op1))
(determine-allocation-amount 'r3 'e31 80)
(adjust-amount 'r3 80 'c1 150 'r3 'e31 80)
(delete-line 'r3 '(e31 e32 e33))

(first-cp *r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp Y2 'c1 'op3 '(op2 op1))
(calc-penalty ’c1 ’op3 ’e21 15 ’e11 8)
(next-cp ’c1 ’c2 ’op4 ’(op3 op2 op1))
(calc-penalty 'c2 'op4 'e32 9 'e12 5)
; (FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST) 
(next-cp 'c2 'c3 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c3 'op5 'e33 10 'e13 6)
;(FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST) 
(select-line 'c1 ’c3)
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Figure 7.3. (Continued)

(select-cell 'c1 'e11 '(op5 op4 op3 op2 op1))
(determine-allocation-amount 'c1 'e11 70)
(adjust-amount 'c1 70 'r1 120 'c1 'e11 70)
(delete-line 'c1 *(e11 e21 e31))

(first-cp *r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 *(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'c2 'op3 '(op2 op1))
(calc-penalty 'c2 ’op3 ’e32 9 'e12 5)
;(FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST) 
(next-cp 'c2 'c3 'op4 '(op3 op2 op1))
(calc-penalty 'c3 'op4 'e33 10 'e13 6)
;(FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST) 
(select-line ’c3 ’c3)
(select-cell 'c3 'e13 '(op4 op3 op2 op1))
(determine-allocation-amount 'c3 'e13 50)
(adjust-amount 'r1 50 'c3 60 'c3 ’e13 50)
(delete-line *r1 '(e11 e12 e13))

(copy-allocation ’c2 70 'e22 'r2 80)
(copy-allocation 'c3 10 'e23 'r2 10)
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The distinction between slips and mistakes is currently widely accepted 

in the literature on cognitive errors (Anderson and Jeffries, 1985; Norman, 1981; 

Kowalski and VanLehn, 1988; Langley et al., 1990; Reason, 1990). The 

distinguishing factor between these two types of errors is intention. Slips occur 

when actions deviate from current intention due to execution failures and/or 

storage failures. In mistakes, actions may run according to plan, but where the 

plan is inadequate to achieve its desired outcomes. Thus, slips are unintended 

actions, whereas mistakes are intended but mistaken actions. Both are the 

same in that they fail to achieve their original goals.

It has been questioned whether errors that are found are mostly slips or 

mistakes. Anderson and Jeffries (1985) reported that, in the study of novice 

LISP programmers, the majority of errors were slips due to losses of information 

in working memory rather than mistakes. Brown and Burton (1978), however, 

showed that most arithmetic errors made by children were systematic and could 

be explained by bugs. Bugs are erroneous variants of a procedure and thus 

denote intentional actions (see 5.1.1 for additional discussion about bugs).

Bugs are constructed through purely syntactic manipulation of symbols (Young 

and O'Shea, 1981; Brown and VanLehn, 1980). Given the massive amount of 

data and conceptual works that support the constructivist assumption and the 

importance of conceptual understanding in understanding performance (see 

4.3), a need arose to consider a process of semantic rationalization in 

interpreting students' errors. Errors that result from faulty semantic 

rationalization process are differentiated from bugs and are called 

misconception (Langley et al., 1990). A misconception involves a person's 

beliefs about the world and implies faulty understanding, whereas a bug is 

inherently procedural and implies faulty performance. Langley et al. (1990)
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differentiated slips from errors, and further refined errors between bugs and 

misconception. Since it is believed that misconceptions are fundamental errors 

that cause bugs to happen, the study focuses on diagnosing misconceptions.

An interesting question becomes whether a slip is easily distinguishable 

from an error. Examining algebra mal-rules, Payne and Squibb (1990) argued 

that mal-rules might not be characterized as the occurrence of a mistake but the 

co-occurrence of a slip and a mistake. In other words, there is "pure" mistake in 

their errors. They pointed out two implications. First, the slip/mistake distinction 

is not like all-or-nothing, either students know the right rule but slip in its 

execution, or they do not know the right rule and must perform local problem 

solving, or apply an incorrect version of the rule. Rather, errors arise when 

students are aware of the right rule in some degree but not strong enough to 

use it. In this case, an appropriate computational mechanism is a strengthening 

mechanism (Langley, 1985). There can be a case that a weaker faulty rule is 

preferred to a strong correct rule. For this case, a partial matching system can 

be used in addition to a strengthening mechanism (Anderson, 1983; Reason, 

1990).

The second implication is that new (mal-)rules may arise when a student 

attempts to make sense of his current procedure. Here again the role of 

semantics is emphasized in explaining error generation. Payne and Squibb 

(1990) then proposed a theoretical framework for explaining algebra errors. The 

main insights are twofolds. First, errors can be modelled by a strengthening 

mechanism that adjusts the applicability of rules. Second, the value of strength 

is determined by rule usages and also by semantic rationalization of rules.

PSCD is based on these notions. AS explained earlier, PSCD assumes the 

crudest strengthening mechanism which hypothesizes only existence or non-
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existence of constraints in a student model. The value of strength associated 

with a constraint is determined by its satisfaction or non-satisfaction. The 

frequency of violations can be also calculated, if needed by the tutoring model.

From this diversion, it may become clear that it does not matter if subject- 

1's errors are slips or mistakes, but what matters is that his errors can be 

usefully viewed as violations of two principles. In addition, the cause of 

violations can be explained as lack of strength associated with constraints.

The rest of the data in Figure 7.4 to Figure 7.7 also shows students' 

errors as violations of some principles. Subject-2 in Figure 7.4 calculated a 

penalty for a deleted line, subject-3 in Figure 7.5 did not take the least-cost cell 

into consideration in calculating a penalty, subject-4 failed to calculate penalties 

for all undeleted lines, and subject-5 made many different types of errors. 

Examining original answer sheets that were corrected by instructors, it was 

found that PSCD's diagnosis was generally compatible with instructors’ 

corrections.

7.4 Summary

In Chapter 6, PSCD is shown to be sufficient to perform transportation 

problem solving as well as counting. In this chapter, PSCD is applied to the 

task of diagnosis. Input data to PSCD are action protocols. An action protocol 

is a sequence of actions with appropriate arguments. Output of PSCD is 

violated constraints.

To examine the PSCD's diagnosis capability, students' answer sheets to 

VAM questions were collected in three introductory management science 

classes. Students' answers were transcribed to action protocols. PSCD was 

run in the diagnosis mode with action protols and reported constraint violations
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are gathered. PSCD's diagnoses and instructors' corrections were compared.

It was found that PSCD's diagnoses were generally compatible with instructors' 

corrections. It appears that the set of constraints hypothesized for VAM problem 

solving is sufficient to make diagnosis of most errors that can happen in VAM 

problem solving.
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Figure 7.4. The action protocol of subject-2
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To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

SUPPLV 1 120

80SUPPLV 2

SUPPLV 3 8080

60 280Demand 70150

©  5
(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1))
(calc-penalty 'r3 ’op3 'e32 9 ’e31 3)
(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 ’op4 'e11 8 'e31 3)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e32 9 ’e12 5)
(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 'op6 'e33 10 'e13 6)
(select-line Y3 'c3)
(select-cell 'r3 'e31 '(op6 op5 op4 op3 op2 op1))
(determine-allocation-amount 'r3 'e31 80)
(adjust-amount 'r3 80 'c1150 'r3 'e31 80)
(delete-line 'r3 '(e31 e32 e33))

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 *(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1)); error - cal-penalty for deleted line 
;(OPPORTUNITY-LINE-NOT-DELETED)
(calc-penalty 'r3 'op3 ’e32 9 ’e31 3)
;(SECOND-OPPORTUNITY-CELL-NOT-DELETED FIRST-OPPORTUNITY-CELL-NOT- 

DELETED OPPORTUNITY-SECOND-LEAST OPPORTUNITY-FIRST-NEXTLEAST 
OPPORTUNITY-LINE-NOT-DELETED)

(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 'op4 'e21 15 'e31 3)
;(SECOND-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-SECOND-LEAST) 
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1))
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Figure 7.4. (Continued)

(calc-penalty 'c2 'op5 'e22 10 'e12 5)
(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1))
(calc-penalty *c3 'op6 'e23 12 'e13 6)
(select-line 'c1 'c3)
(select-cell 'c1 'e11 '(06 o5 o4 o3 o2 o1)) 
(determine-allocation-amount'c1 'e11 70)
(adjust-amount 'c1 70 'r1 120 'c1 'e11 70)
(delete-line 'c1 ’(e11 e21 e31))

(first-cp 'r1 'op1 nil)
(calc-penalty V1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty ’r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1)); ;error - cal-penalty for deleted line 
(calc-penalty Y3 'op3 'e32 9 'e31 3)
(next-cp 'r3 'c1 ’op4 '(op3 op2 op1)) ;error - cal-penalty for deleted line 
(calc-penalty'c1 'op4’e21 15'e31 3)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e22 10 'e12 5)
(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 'op6 'e23 12 'e 13 6)
(select-line 'c3 ’c3)
(select-cell 'e13 '(o4 o3 o2 o1))
(determine-allocation-amount 'r1 'e13 50)
(adjust-amount 'r1 50 ’c3 60 50 'c3 'e13 50)
(delete-line 'r1 '(e11 e12 e13))

.m .1 r-r--n n .... . . . . . . I  I. .. .. .. .. . n

(copy-allocation 'c2 70 'e22 Y2 80)
(copy-allocation *c3 10 'e23 'r2 10)
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Figure 7.5. The action protocol of subject-3
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To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

SUPPLV 1 120

80SUPPLV 2 60

SUPPLV 3 8080

60 280Demand 150 70

5 6
(first-cp 'r1 'op1 nil)
(calc-penalty 'rl 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 ’(op1))
(calc-penalty 'r2 'op2 'e2312 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1))
(calc-penalty 'r3 'op3 'e32 9 'e31 3)
(next-cp 'r3 'c1 'op4 '(op3 op2 op1)) 
(calc-penalty 'cl 'op4 'el 1 8 'e31 3)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1)) 
(calc-penalty 'c2 'op5 'e32 9 'a 12 5)
(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1)) 
(calc-penalty ’c3 ’op6 ’e3310 'e13 6)
(select-line 'r3 'c3)
(select-cell 'r3 'e31 '(op6 op5 op4 op3 op2 op1)) 
(determine-allocation-amount 'r3 'e31 80) 
(adjust-amount 'r3 80 'c1 150 'r3 'e31 80) 
(delete-line ’r3 '(e31 e32 e33))

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'c1 'op3 '(op2 op1))
(calc-penalty 'c1 'op3 'e21 15 'e11 8)
(next-cp 'c1 'c2 'op4 '(op3 op2 op1)) 
(calc-penalty 'c2 'op4 'e2210 'e12 5)
(next-cp 'c2 'c3 'op5 '(op4 op3 op2 op1)) 
(calc-penalty 'c3 'op5 'e23 12 'e13 6)
(select-line 'cl ’c3)
(select-cell 'c1 'e11 '(op5 op4 op3 op2 op1)) 
(determine-allocation-amount'c1 'e11 70) 
(adjust-amount 'c1 70 'r1 120 'c1 'e11 70)
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Figure 7.5. (Continued)

(delete-line 'c1 '(e11 e21 e31))

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 ’op1 'e13 6 'e12 5) 
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10) 
(next-cp ’r2 'c2 'op3 '(op2 op1)) 
(calc-penalty ’c2 'op3 'e22 10 'e12 5) 
(next-cp 'c2 'c3 'op4 '(op3 op2 op1)) 
(calc-penalty 'c3 'op4 'e23 12 'e 13 6) 
(select-line 'c3 'c3)
(select-cell 'c3 'e23 '(op4 op3 op2 op1)) 
;(SELECT-LEAST-COST-CELL) 
(determine-allocation-amount 'c3 'e23 60) 
(adjust-amount 'r1 50 'c3 60 'c3 'e23 60) 
(delete-line 'c3 '(e11 e12 e13))
I *r_ ' ,,T ' I"T n
(copy-allocation 'c2 20 'e22 'r2 80) 
(copy-allocation 'c3 60 'e23 'r2 60)
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Figure 7.6. The action protocoi of subject-4
153

To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

SUPPLY 1 60 120

80SUPPLY 2

SUPPLY 3 8080

60 280Demand 70150

5 6
(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp *r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e2210)
(next-cp 'r2 'r3 'op3 '(op2 op1))
(calc-penalty ’r3 'op3 'e32 9 'e31 3)
(next-cp 'r3 'c1 'op4 '(op3 op2 op1)) 
(calc-penalty 'c1 'op4 'e11 8 'e31 3)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1)) 
(calc-penalty 'c2 'op5 'e32 9 'e12 5)
(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1)) 
(calc-penalty 'c3 'op6 'e33 10 'e13 6)
(select-line 'r3 'c3)
(select-cell 'r3 'e31 '(op6 op5 op4 op3 op2 op1)) 
(determine-allocation-amount 'r3 'e31 80) 
(adjust-amount 'r3 80 'c1 150 'r3 'e31 80) 
(delete-line 'r3 '(e31 e32 e33)

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty rr2 'op2 'e23 12 'e2210)
(next-cp 'r2 'c2 'op3 '(op2 op1))
(calc-penalty 'c2 'op3 'e22 10 'e12 5)
(next-cp 'c2 'c3 'op4 '(op3 op2 op1)) 
(calc-penalty ’c3 ’op4 'e23 12 'e 13 6)
(select-line 'c3 ’c3)
;(SELECT-LINE-AFTER-ALL-OPPORTUNITIES) 
(select-cell 'c3 'e13 '(op5 op4 op3 op2 op1)) 
(determine-allocation-amount 'c3 'e13 60) 
(adjust-amount 'c3 60 Y1 120 'c1 ’e13 60) 
(delete-line c3 '(e13 e23 e33))
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Figure 7.6. (Continued)

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e11 8 'e12 5) 
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty ’r2 ’op2 'e21 15 ’e22 10) 
(next-cp 'r2 'c2 'op3 '(op2 op1)) 
(calc-penalty 'c2 'op3 'e2210 'e12 5) 
(next-cp 'c2 'c1 'op4 '(op3 op2 op1)) 
(calc-penalty 'c1 'op4 'e21 15 'e11 8) 
(select-line ’c1 ’c1)
(select-cell 'c1 'e11 '(op4 op3 op2 op1)) 
(determine-allocation-amount 'c1 'e11 60) 
(adjust-amount 'r1 60 'c3 70 'c1 'e11 60) 
;{VALUE=TOTAL+CURRENT) 
(delete-line 'r1 '(e11 e12 e13)) 
;(VALUE=TOTAL+CURRENT)

(copy-allocation 'c1 10 'e21 'r2 80) 
;(VALUE=TOTAL+CURRENT) 
(copy-allocation 'c2 70 'e22 Y2 70) 
;(VALUE=TOTAL+CURRENT)
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Figure 7.7. The action protocol of subject-5
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To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

SUPPLV 1 70 12060

80SUPPLY 2

SUPPLV 3 8080

60 280Demand 70150

5 6
(first-cp 'r1 'op1 nil)
(calc-penalty 'r 1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1))
(calc-penalty 'r3 'op3 'e32 9 'e31 3)
(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 'op4 'e11 8 'e31 3)
(next-cp 'c1 'c2 'op5 ’(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e32 9 'e12 5)
(next-cp 'c2 'c3 ’op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 'op6 'e33 10 'e13 6)
(select-line 'r3 ’c3)
(select-cell 'r3 'e31 '(op6 op5 op4 op3 op2 op1))
(determine-allocation-amount 'r3 'e31 80)
(adjust-amount 'r3 80 'c1 150 'r3 'e31 80)
(delete-line 'r3 '(e31 e32 e33))

(first-cp 'r1 'op1 nil)
(calc-penalty 'rl 'op1 'e13 6 'e12 5)
(next-cp *r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 ’e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1))
;(OPPORTUNITY-LINE-NOT-DELETED)
(calc-penalty 'r3 'op3 'e32 9 'e31 3)
; (SECOND-OPPORTUNITY-CELL-NOT-DELETED FIRST-OPPORTUNITY-CELL-NOT- 

DELETED OPPORTUNITY-SECOND-LEAST OPPORTUNITY-FIRST-NEXTLEAST 
0 PPORTUNITY-LIN E-NOT-DELETED)

(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 'op4 'e21 15 'e11 8)
(next-cp 'c1 'c2 ’op5 '(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e32 9 'e12 5)
;(FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST)
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Figure 7.7. (Continued)

(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 ’op6 *e3310 'e13 6)
;(FIRST -OPPORTUNITY-CELL-NOT -DELETED OPPORTUNITY-FIRST-NEXTLEAST)
(select-line 'c1 'c3)
(select-cell 'c1 'e11 '(op6 op5 op4 op3 op2 op1))
(determine-allocation-amount 'c1 'e11 70)
(adjust-amount 'c1 70 'r1 120 'c1 'e11 70)
(delete-line 'c1 '(©11 ©21 e31))

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 *e12 5)
(next-cp *r1 'r2 'op2 '(op1))
(calc-penalty ’r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'c2 'op3 '(op2 op1))
(calc-penalty 'c2 'op3 'e32 9 'e12 5)
;(FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST)
(next-cp 'c2 'c3 'op4 '(op3 op2 op1))
(calc-penalty 'c3 'op4 'e3310 'e13 6)
(select-line 'c2 'c3)
(select-cell 'c2 'e12 '(op4 op3 op2 op1))
(determine-allocation-amount 'c2 'e12 50)
(adjust-amount 'r1 50 'c3 60 ’c2 'a12 50)
;(VALUE=TOTAL+CURRENT)
(delete-line T1 '(el 1 e12 e13))
;(VALUE=TOTAL+CURRENT)

(first-cp 'r2 'op1 nil)
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT)
(calc-penalty 'r2 'op1 'e23 12 'e22 10)
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT)
(next-cp 'r2 'r3 'op2 '(op1))
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT OPPORTUNITY-LINE- 
NOT-DELETED)
(calc-penalty 'r3 'op2 'e33 10 'e32 9)
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT SECOND- 

OPPORTUNITY-CELL-NOT DELETED FIRST-OPPORTUNITY-CELL-NOT-DELETED 
OPPORTUNITY-SECOND-LEAST OPPORTUNITY-FIRST-NEXTLEAST OPPORTUNITY-LINE- 
NOT-DELETED)

(next-cp 'r3 'c2 'op3 '(op2 op1))
;(PREFER-COPY-OVER-CALC-PENALTYVALUE=TOTAL+CURRENT)
(calc-penalty 'c2 'op3 'e2210 'e32 9)
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT SECOND- 

OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-SECOND-LEAST OPPORTUNITY- 
FIRST-NEXTLEAST)

(next-cp 'c2 'c3 ’op4 ’(op3 op2 op1))
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT)
(calc-penalty ’c3 ’op4 'e33 10 'e13 6)
.(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT SECOND- 

OPPORTUNITY-CELL-NOT-DELETED FIRST-OPPORTUNITY-CELL-NOT-DELETED 
OPPORTUNITY-SECOND-LEAST OPPORTUNITY-RRST-NEXTLEAST)

(select-line 'c3 ’c3)
;(VALUE=TOTAL+CURRENT)
(select-cell 'c3 'e13 '(op4 op3 op2 op1))
;('VALUE=TOTAL+CURR ENT SELECT-LEAST-COST-CELL)
(determine-allocation-amount 'c3 'e13 50)
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;(VALUE=TOTAL+CURRENT)
(adjust-amount 'r1 50 'c3 60 'c3 'e13 50)
;(VALUE=TOTAL+CURRENT DELETE-LINE-WHEN-ALL-AMOUNT-ALLOCATED)

(copy-allocation 'c2 20 'e22)
;(VALUE=TOTAL+CURRENT DELETE-LINE-WHEN-ALL-AMOUNT-ALLOCATED) 
(copy-allocation 'c3 10 ’e23)
;(VALUE=TOTAL+CURRENT DELETE-LINE-WHEN-ALL-AMOUNT-ALLOCATED)
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Chapter 8 LIMITATIONS, IMPLICATIONS, AND FUTURE 

DIRECTIONS

8.1 Limitations

A factor that may prohibit PSCD from practical application is its 

inefficiency. The biggest bottleneck may be the pattern matcher. In the 

performance mode, PSCD must match all productions to working memory and 

find all instantiations of applicable productions, which take some time. In 

addition PSCD must find violated constraints for every states generated by 

possible instantiations. This process actually takes a lot of time. For example, 

suppose PSCD finds x number of instantiations and has y number of 

constraints, the matcher has to be called yx times! One way of avoiding this 

situation may be the use of structured object representation such as frames or 

scripts for the representation of working memory elements.

In validating PSCD, this study used a limited set of problems and a small 

set of students. It was difficult for us to have a large amount of data because 

PSCD is not a fully implemented ITS. When PSCD becomes fully implemented, 

PSCD can collect error data when students use PSCD. Since such error data 

are in machine readable forms, they can be easily transcribed to action 

protocols by a simple function. Implementing PSCD fully is the next research 

project.

From the experience of buiiding PSCD, this researcher became strongly 

to agree with VanLehn (1983), that getting the right representation language is 

the most important aspect of building a computational model. A number of 

different representation languages were considered for modeling the task of 

transportation problem solving before the current representation language was 

determined, but the current language still needs more improvement. With the
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current language, it was a little difficult to separate relevance conditions and 

satisfaction conditions in some cases. For example, we expressed the 

constraint 14 that says "Select a line after all undeleted lines are associated 

with some opportunity" as ((inst =line-1 line)(allocate =line-1)(inst =line 

line)(status =line nil)(*no (relate =some dine))** nil)). The exact interpretation 

of this expressions would be that If there is a line "line-1" that is selected for 

allocation, and there is another "line" whose state is not deleted and the "line" is 

not related with any opportunity, then the state violates this constraint.

Although this expression achieves its goal in representing its original concept, it 

blurs the distinction between the relevance and the satisfaction conditions.

More study must be directed to devise a better representation language.

8.2 Implications and Future Directions

This study implies that integration of theories is possible with the 

computational modeling approach and also fruitful in that it enables practical 

applications. Experience from this study also suggests that it may be possible 

to integrate even the normative theory, i.e., the theory of rational choice. For 

example, the control problem of a production system (i.e., conflict resolution) 

can be viewed as selecting the most promising state out of possible states. It 

appears that this integration with the normative theory would realize more 

practical decision aids in business domains and also provide ample 

opportunities for exploring alternative decision theories.

The PSCD architecture proposed in this study has some limitations as 

stated in the previous section. It appears that these limitations are not major 

disadvantages, but related to minor implementation details. Inefficiency is 

pointed out as a problem for inhibiting practical application. The methodology of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

160

object-oriented programming appears to be useful in alleviating the inefficiency 

problem of PSCD. It is uncertain how much the methodology can contribute, 

but in general structured object representations are more efficient because 

related facts can be retrieved easily. However, structuring of related objects will 

reduce the flexibility of reasoning. Apparently more study is needed.

A promising path for future studies is to integrate a planning technique 

with a learning model, as VanLehn (1987) did. In fact PSCD assumes that all 

observable, physical activity is available. Thus when designing an interface, it 

is necessary to have all primitive actions present in the screen and to require 

students' to choose an action after an action. Only in this way can PSCD have 

all observable information necessary for diagnosis. If a planning technique 

were incorporated in PSCD, interface design would be simpler and nicer 

because a planning technique would allow PSCD to infer missing actions.

Yet another promising path is to explore the relationship between 

explanation-based learning and state constraints theory, and between empirical 

and rational learning. Both explanation-based learning and state constraint 

theory are rational learning, but they are different in that explanation-based 

learning works on state generation whereas state constraints theory works on 

state evaluations. Integration of these two types of rational learning 

mechanisms would yield a better computational model. Integrated learning 

which attempts to integrate empirical and rational learning is a recent topic that 

attracts much attention (Pazzani, 1990). Integration in itself is worth try.

A recent study shows that semantic construction is not limited to the use 

of principled knowledge that are already possessed by learners, but can lead to 

development of new principled knowledge (Chi and VanLehn, 1991). This is 

the question how you get principled knowledge in the first place. Chi and
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VanLehn (1991) called the process of creating new knowledge as 

"construction." They posited several subprocesses underlying construction, 

such as a natural language inferencing using common sense knowledge, 

inferencing based on new information presented in the example, and a kind of 

generalization after several self-explanations have been generated. This is 

another area to explore.

Finally, but not the least important, much efforts must be directed to 

integrate cognitive theories with management related theories. For example, it 

may be possible to consider possible effects of task characteristics on 

information processing, known as the contingent decision hypothesis. The 

contingent decision hypothesis states that judgment and choice are highly 

contingent on task characteristics (Einhorn and Hogarth, 1981). Further it is 

argued that an individual utilizes a number of different information-processing 

strategies to solve decision tasks, and any decision strategy has certain benefits 

(accuracy) associated with its use and also certain costs (efforts) (Johnson and 

Payne, 1985; Johnson et al., 1988; Payne, 1976; Payne et al. 1988; Payne et 

al., 1990). Decision rule selection would then consider both the costs and 

benefits associated with each possible strategy, and select the best strategy.

The idea of the strategy selection by the trade-off between strategy's effort and 

strategy's accuracy was also supported by several authors (Beach and 

Mitchell, 1978) who argued strongly for the idea that strategy selection is the 

result of a compromise between the desire to make a correct decision and the 

desire to minimize effort. One way to incorporate the theory to PSCD is to 

represent decision strategies as rules, use a search mechanism for guiding rule 

firings, and have the search being directed by an evaluation function which 

represents the trade-off relationship between accuracy and efforts.
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Another way to incorporate the contingent decision hypothesis in the 

current PSCD architecture may be to posit a meta-cognitive mechanism which 

guides the selection of an information processing strategies from a number of 

alternatives (e.g., elimination by aspects, satisficing, lexicographic choice, equal 

weighting), and use the selected strategy for search through the problem space. 

Although this appears to be a better way, there is a problem of validation. Such 

a study may need more dense protocol to validate a meta-cognitive mechanism, 

which means more time and efforts. This topic is set aside for future research. It 

is believed that the "task" variable is important because it provides a bridge 

between theories at the individual level (e.g.., organizational behavior or HIP) 

and theories at the organizational level (e.g., organizational theories). In recent 

years, there have been many attempts to incorporate organizational context 

variables into the design of decision aids. This literature is often called 

computer-supported cooperative work (Greif, 1988). In later works, this 

researcher will be directing more efforts to the integration of cognitive theories 

with high level theories employed in business studies.
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