
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.comReproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

O rd er N u m b er 9219387

D evelopm ent o f a cognitive diagnosis system for intelligent
tutoring: A n application to transportation problem -solving

Shin, Dong-Ik, Ph.D.

The University of Nebraska - Lincoln, 1992

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

DEVELOPMENT OF A COGNITIVE DIAGNOSIS SYSTEM FOR

INTELLIGENT TUTORING:

AN APPLICATION TO TRANSPORTATION PROBLEM SOLVING

by

Dong-lk Shin

A DISSERTATION

Presented to the Faculty of

The Graduate College in the University of Nebraska

In Partial Fulfillment of Requirements

For Degree of Doctor of Philosophy

Major: Interdepartmental Area of Business

Under the Supervision of Professor Sang M. Lee

Lincoln, Nebraska

December, 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DISSERTATION TITLE

Development of A Cognitive Diagnosis System For Intelligent Tutoring

An Application To Transportation Problem Solving

BY

Dong-lk. Shin

SUPERVISORY COMMITTEE:

APPROVED

Sign:

Sang M. Lee
Typed Name

Typed Name

Sifitfature

James F. Brown
Typed Name

Signature

 Susan Wiedenbeck
Typed Name

Signature

Typed Name

Signature

Typed Name

t)

DATE

------------------ i z / j i /q i
Signature Q 1 /

 Lester A. Digman __ __ ____

GRADUATE COLLEGE
UNIVERSITY OF NEBRASKA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DEVELOPMENT OF A COGNITIVE DIAGNOSIS SYSTEM FOR INTELLIGENT

TUTORING : AN APPLICATION TO TRANSPORTATION PROBLEM SOLVING

Dong-lk Shin, Ph.D.

University of Nebraska, 1991

Adviser: Sang M. Lee

The purpose of this study is to design and develop a cognitive diagnosis

system for intelligent tutoring. The cognitive diagnosis system proposed in this

dissertation is called PSCD (Production System for Cognitive Diagnosis).

PSCD is intended for intelligent tutoring with possible relevance to decision

aiding.

This dissertation is based on two assumptions. First, it is assumed that

perspectives and methodologies of cognitive science provide a starting point

for integrating decision-making studies and cognitive studies (Simon, 1979).

Second it is assumed that integrating theories and building an integrated theory

or theories into a cognitive architecture provide opportunities to realize practical

applications (Newell, 1990). Basing on these two assumptions, the study

attempts to integrate three theories of human information processing and to

build the integrated theory into PSCD.

Three theories considered in this study are heuristic search, production

systems architecture, and constructivism. These three theories act as

constraints in setting the design specification of PSCD in the huge space of

alternative designs. PSCD that are developed henceforth is applied to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

counting task for initial validation, and to a transportation problem solving task

which is the main task of this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGEMENT

In the process of this dissertation research, I have benefited from many

people. First, I would like to thank my dissertation adviser, Dr. Sang M. Lee, for

his intellectual and moral support, and the members of my dissertation

committee for their helpful suggestions and support. My sincere thanks also go

to my friends and their families for making the times so endurable.

Finally, I would like to thank my parents and family for their

encouragement and financial support which gave me the strength to complete

this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

Chapter 1 INTRODUCTION... 1

1.1 Decision-Making..3

1.2 Decision A ids... 7

1.3 O verview ..11

Chapter 2 THE HEURISTIC SEARCH CONSTRAINT... 14

2.1 Cognitive Science... 14

2.2 The Physical Symbol System Hypothesis..............................16

2.3 The Problem Space Hypothesis... 18

2.4 The Bounded Rationality Hypothesis..20

2.5 The Heuristic Search Hypothesis..21

2.6 Summary...23

Chapter 3 THE PRODUCTION SYSTEM CONSTRAINT....................................25

3.1 Production Systems as Cognitive Architectures................ 25

3.1.1 Production Systems... 25

3.1.2 A Schema Architecture...31

3.1.3 Why Production Systems?...34

3.2 Search and Production Systems..36

3.3 Summary...40

Chapter 4 THE CONSTRUCTIVIST CONSTRAINT... 41

4.1 Principles and Procedures.. 42

4.2 Summary...47

Chapter 5 METHODOLOGIES OF COGNITIVE DIAGNOSIS..............................49

5.1 Differences between Expert and Student..............................52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.1.1 Generative Theories of Bugs...................................... 54

5.1.2 Reconstructing Buggy Rules: Learning or

Planning.. 58

5.2 Learning Theories..62

5.2.1 Strategy Learning Systems..64

5.2.2 Generalization and Discrimination

Learning..67

5.2.3 A General Theory of Discrimination

Learning..70

5.3 Empirical Learning..73

5.4 Importance of Domain Principles in Procedure

Construction...75

5.5 Rational Learning..78

5.6 Summary..82

Chapter 6 A MODEL OF COGNITIVE DIAGNOSIS.......................................84

6.1 The Central Architecture for Performance and Cognitive

Diagnosis...85

6.2 Representation of PSCD..87

6.2.1 Representation fo r Facts.. 88

6.2.2 Representation for Principled Knowledge.................. 90

6.2.3 Representation for Procedural Knowledge................. 91

6.2.4 The Strengthening Process... 93

6.3 Performance and Diagnosis o f PSCD.....................................95

6.4 Modeling Standard Counting...98

6.5 Modeling Transportation Problem Solving.......................... 108

6.5.1 Transportation Problem Solving..................................... 108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

i i i

6.5.2 Principled and Procedural Knowledge o f

Transportation Problem Solving....................................... 114

6.6 Summary.. 131

Chapter 7 VALIDATION OF THE MODEL..132

7.1 Validation Methodology..132

7.2 Data Collection...138

7.3 Results and Explanations... 141

7.4 Summary.. 147

Chapter 8 LIMITATIONS, IMPLICATIONS, AND FUTURE

DIRECTIONS... 158

8.1 L im ita tio n s ...158

8.2 Implications and Future Directions.......................................159

BIBLIOGRAPHY.. 163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

i v

LIST OF FIGURES

Figure 1.1. An informations processing system................................... 5

Figure 1.2. Overview...13

Figure 3.1. An example of a production system.................................... 29

Figure 3.2. An example of meta-rules.. 39

Figure 4.1. Principles, procedures, and performances..............................41

Figure 5.1. Cognitive diagnosis.. 50

Figure 5.2. Generative theory of bugs (Brown and VanLehn,

1980, p. 380).. 55

Figure 5.3. Hypotheses of the state constraint theory............................ 80

Figure 6.1. The main characteristics of PSCD... 85

Figure 6.2. Principles of representation... 89

Figure 6.3. The top-level function of performance.............................. 95

Figure 6.4. The top-level function of diagnosis....................................97

Figure 6.5. A standard procedure of counting.. 100

Figure 6.6. A language for standard counting.. 100

Figure 6.7. A problem space for standard counting................................... 101

Figure 6.8. Initial working memory elements and rules........................103

Figure 6.9. State constraints.. 105

Figure 6.10. A program trace for an example problem....................... 107

Figure 6.11. A general procedure of VAM...110

Figure 6.12. Control structure...I l l

Figure 6.13. Four principles underlying the VAM procedure................112

Figure 6.14. An example problem (adopted from Lee e t

al.,1990)... 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

V

Figure 6.15. A language for transportation problem solving................ 114

Figure 6.16. A problem space for transportation problem

so lv ing ..119

Figure 6.17. Initial Working Memory and Rules.....................................121

Figure 6.18. State constraints.. 124

Figure 6.19. A program trace for the example problem.......................128

Figure 7.1. Hall and Kibler's (1985, p. 171) typology........................... 137

Figure 7.2. Transportation problems..139

Figure 7.3. The action protocol of subject-1... 143

Figure 7.4. The action protocol of subject-2...149

Figure 7.5. The action protocol of subject-3...151

Figure 7.6. The action protocol of subject-4...153

Figure 7.7. The action protocol of subject-5...155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1
Chapter 1 INTRODUCTION

The purpose of this study is to design and develop a computational

model of cognitive diagnosis for intelligent tutoring. The cognitive diagnosis

system proposed in this dissertation is called Production System for Cognitive

Diagnosis (PSCD). PSCD is intended for intelligent tutoring with possible

extension to decision aiding. Cognitive diagnosis refers to the process of

inferring a person’s cognitive state from his performance (Ohlsson, 1986a;

VanLehn, 1988). Cognitive diagnosis is a central problem in developing an

intelligent tutoring system (ITS) which is a computer system that helps students

learn. In addition, cognitive diagnosis is an essential capability of a knowledge

communication system. Knowledge communication is the idea that human-

computer interactions can be viewed as causing or supporting the acquisition of

one's knowledge by the other, via a restricted set of communication operation

(Wenger, 1987). Given this definition, the idea of knowledge communication is

applicable without suspicion to ITSs, also appropriate to expert systems and

even to any intelligent computer systems that are intended for human uses.

Cognitive diagnosis is a difficult problem because a person’s cognitive

states are not observable and must be inferred from observable behaviorai

data. In addition, there is a methodological problem in determining a unique

representation and process, used to describe cognitive states, that might have

produced observed behavioral. It is generally known that the same behavioral

data can be reproduced by a number of different cognitive representations and

processes (Anderson, 1990). The problem is called the nonidentifiability

problem.

The nonidentifiability problem is viewed so serious and intractable that

Anderson (1990), for example, proposed to avoid inferring cognitive states from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

behavioral data but to determine cognitive states on the basis of the normative

theory of optimization. The Anderson's (1990) approach to the

nonidentifiability problem, as Newell (1990) pointed out, arises from a narrow

focus on behavioral data in identifying a unique representation and process.

Another way of overcoming the nonidentifiability problem is to integrate large

and diverse collections of knowledge that would help pin down to a unique

representation and process of cognitive states. A repository of such large and

diverse knowledge is called a unified theory (Newell, 1990).

A unified theory is argued to result in great increases in identifiability. The

unified theory approach calls for brining more constraints in the design of a

system and approximating real situations as close as possible. Through the

process of developing a unified theory, implementing it in a system, and

comparing behaviors of a system to real behavioral data, there is more

opportunity to discover impacts and roles of each constraint and to explore

validity of alternative design specifications. The unified theory approach

reduces the degrees of freedom that allow so many models to coexist with the

same data. Such a way of eliminating alternative models is termed as the

sufficiency criterion (Newell, 1973a).

The approach taken in this study is the unified theory approach. The

unified theory approach merits attention because it provides a way of

overcoming the nonidentifiability problem. In addition, it is the unified theory

approach that opens the way for practical application, for example the cognitive

diagnosis system of this study. This is the case because the more unified a

theory, the more approximate a system to real situations, and the more a system

practically useful.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This cognitive diagnosis system proposed in this study can be used as a

component in decision aids. Developing decision aids that would help decision

makers make better decisions has become the central concern in decision

making studies. In this introductory chapter, the perspective of this study is

outlined and discussed in relation to decision-making studies (Section 1.1) and

to various kinds of decision aids (Section 1.2). Section 1.3 shows the overview

of this study.

1.1 Decision-Making

Decision-making is a subject which has attracted the attention of scholars

of a number of different disciplines (Ungson and Braunstein, 1982; Janis and

Mann, 1977; Simon, 1960). Economists, equipped with a theory of rational

choice, have studied how human decision-making causes, and is caused by,

economic activities (Demski, 1972; Kreps, 1988; Schoemaker, 1991);

psychologists, especially behavior decision psychologists, have described and

explained the point of departure of human performance from the normative

theory (Simon, 1955,1960,1976; Hogarth, 1980; Wright, 1985; Hogarth and

Reder, 1987; Hogarth, 1990); decision analysts have developed tools intended

to help decision makers do what economists often assume they are already

doing (Lee, 1972; Raiffa, 1974; Keeney and Raiffa, 1976; Winterfeldt and

Edwards, 1986; Lee et al, 1990); and artificial intelligence researchers have

tried to develop computer-implemented tools for aiding decisions or for learning

how to make decisions (Buchanan and Shortliffe, 1984; Clancey, 1986;

Anderson et al., 1985).

Business researchers, drawing concepts and methodologies from a

number of different disciplines, have studied individual and organizational

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

decision-making in a number of different business tasks (Argyris, 1977; Libby,

1981; Bailey, Jr., 1987; Bhaskar and Dillard, 1977). Especially, the behavioral

sciences have exerted significant influence on research in business (Ungson

and Braunstein, 1982), and business research that uses concepts and

methodologies of the behavioral sciences is termed behavioral research

(Caplan, 1988). The term "behavioral sciences" is usually viewed by business

researchers as encompassing psychology, organization theory, and sociology.

These three disciplines deal with issues at different levels: psychology deals

with issues at the individual level; organization theory at the organization level;

and sociology at the society level.

Psychology, especially behavioral psychology, has been extensively

applied to a number of business problems (Libby, 1981; Ko and Mock, 1988;

Shields, 1988). In the tradition of behavioral psychology, much behavioral

research has represented human decision-making in statistical models such as

regression (Hursch et al., 1964; Slovic et al., 1977; Libby, 1975), ANOVA

(Hoffman et al., 1968; Ashton, 1974), and multidimensional scaling (Green and

Rao, 1972; Libby, 1979), or in variants of statistical decision theory such as

heuristics (Tversky and Kahneman, 1974; Joyce and Biddle, 1981; Waller and

Felix, 1987). Although this body of research has resulted in useful insights and

an extensive amount of empirical data, criticisms have also been raised. Many

studies that used linear models to represent HIP showed very high levels of

predictive accuracy. The very high predictive power of such linear models,

however, is argued to be largely an artifact of the mathematics, because linear

models were found to be very robust even when assumptions were violated

(Dawes and Corrigan, 1974). Research in cognitive heuristics and biases also

was subject to such criticisms as lack of attempts to understand decision

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

processes and to build decision aids which would improve decision-making

(Shanteau, 1989).

Statistical and heuristics/biases studies have given rise to many different

types of theories. Underlying these decision-making studies is the perspective

of information processing psychology. Information processing psychology

views a decision maker as an information processing system which takes input

from the environment, processes input, and produces output (Figure 1.1).

Produced output can be further used as input to an information processing

system.

Figure 1.1. An informations processing system

Input OutputProoess

Viewing a decision maker as an information processing allows to

characterize different perspectives of decision-making studies, because in this

view models of decision maker are emphasized. For example, the perspective

of economists is a rational man, statistical decision-making studies view a

decision maker as an intuitive statistician, and the view of behavioral decision

theorists is a fallible man. The perspective taken in this study is a constructive

mind, which will be explained in detail Chapter 4. The hypothesized

perspective of an information processing system determines the frame of

reference of the study (Clancey, 1991). Each perspective and associated

methodologies shape the degree and extent of models of decision maker. In

fact, it appears that decision-making studies have progressed to develop more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

descriptively valid and powerful models of decision maker. In other words,

decision-making researchers have attempted to develop models of decision

maker that are powerful enough to reflect many observed aspects of decision

making.

Thus, this study proposes two requirements for a theory of decision

making. First, a theory of decision-making must have a model of a decision

maker. This model is called cognitive model in cognitive science, and often

called user model in human-computer interaction literature or student model in

intelligent tutoring system literature. Studies of decision-making can be viewed

progressing to more powerful representations or models of decision maker.

Second, a theory of decision-making must be able to predict and explain

human decision behavior with a model of a decision maker. This includes not

only correct performance but also faulty performance. Only then can a theory of

decision-making be realized in a decision aid that is able to provide "true"

support to decision maker, and prove its usefulness. In fact, a final test for a

theory of decision-making is its utility for aiding and improving decisions.

Reviewing decision-making studies led to two general conclusions: (a)

humans tend to err and (b) even this tendency, humans can successfully

perform difficult tasks, given time, help, and tools (Libby, 1981; Reason, 1990;

Winterfeldt and Edwards, 1986). These observations led to increased interest

in understanding human errors, and in designing and developing decision aids

which may help humans avoid such errors.

There is a variety of decision aids which rely on different theories and

methodologies. This study employs theories and methodologies of cognitive

science to propose a model of cognitive diagnosis. This study assumes that

abilities of both decision-making and problem-solving originate from one mind,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

though there is a difference in the type of tasks being addressed. Decision

making typically involves ill-structured problems whereas problem-solving

usually concerns well-structured problems. It may be the case that there are

some invariants that do not differ in both cognitive processes. Those invariants

constitute a functional architecture of mind. After all, as Newell (1980,1990)

observed, it is one mind that solves a problem, makes a decision, and that

produces all aspects of intelligent behavior.

This study addresses the problem of cognitive diagnosis, often called

user modeling or student modeling. Cognitive diagnosis can be used for

several purposes: determining if the user's performance is correct by

comparing an inferred model to an expert model; explaining why the

performance is wrong; predicting his or her performance in future tasks. Such

abilities enable many applications to be possible: preventing a human error

that can make a catastrophic disaster in a dangerous situation, for example

nuclear plant failure; enhancing explanation capability of expert systems,

automating protocol analysis; and training novices or students. The intended

use of PSCD in this study is for intelligent tutoring.

1.2 Decision Aids

Designing decision aids that improve decision-making has been the

central concern in Management Information System (MIS), and especially in the

subfield of MIS, known as Decision Support System (DSS). MIS is a computer-

based system for collecting, storing, retrieving, and processing information that

is used, or desired, by managers in the performance of their duties (Ein-Dor and

Segev, 1977; Davis and Olson, 1985). MIS typically involves in organizing

information so that a decision maker may easily assess and understand

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

information necessary for performing his or her duties. Such systems have in

general proven to be most useful, but the idea behind MIS has a serious

limitation. MIS mostly focuses on organizing information, and incorporates very

few decision-aiding ideas.

A more powerful system may provide decision models that can aid

decisions, as well as easy access to organized information. A class of systems,

called DSS, places more emphasis on "support" than does MIS. DSS supports

decision makers in their attempts to solve semistructured problems and

provides interactive means to test alternative solutions for their consequences

(Gorry and Scott Morton, 1971; Keen and Scott Morton, 1978; Alter, 1980).

DSS has a more powerful processing capability than MIS in general, but Its

processing capability is commonly limited to answer "what-if..." questions.

Recent advances in artificial intelligence (Al) have introduced a new way

of building the most interesting kinds of decision aids, expert systems. There

have been many studies trying to apply AI methodologies to difficult business

problems (Paradice and Courtney, 1989; O'Leary, 1987; Vasarhelyi, 1987;

Peters et al., 1989; Blanning, 1990; Pau et al., 1989). An expert system is a

computer program that exploits the judgments made earlier by an expert in the

task at hand. These judgments, which are represented in a computer with the

use of a computational language, can provide both expertise and procedural

advice that a decision maker may find helpful.

The process of building an expert system is often called knowledge

engineering (Waterman, 1986). Knowledge engineering involves extracting

from the human experts their procedures, strategies, and rules of thumb for

problem solving, and building this knowledge into the expert system.

Knowledge engineering extracts humanlike knowledge from experts, but is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

concerned with cognitive fidelity of various ways of using such knowledge. In

other words, the knowledge engineering methodology deploys humanlike

knowledge in nonhuman ways. One pitfall of using such a methodology is the

potential absence of knowledge communication in resulting systems (Anderson,

1988).

Knowledge communication, in fact, is the goal of any computer system

intended for human uses. When a computer system lacks cognitive fidelity, a

computer system may not understand what a user intends to communicate to it,

and a user also may have difficulties in understanding what a computer tries to

say. It may be the case that true knowledge communication is possible only

when both sides have a model of each other (Anderson, 1988). One

requirement for a computer system, then, is to keep a cognitive model of the

user, so that it can interpret the user's actions with a cognitive model. This

approach is called the cognitive modeling or cognitive simulation approach,

which is at the heart of cognitive science.

Cognitive modeling, often called computational modeling because

cognitive modeling typically presumes the use of a computer for modeling, is

more active in ITS studies than in expert systems studies. This is primarily

because of the necessity of maintaining a student model in ITS. The cognitive

modeling approach has also been advocated as a promising approach for

studying human knowledge (Anderson, 1987). The best way to study human

knowledge, as Anderson (1987) argued, is to look for differential learning

outcomes in pedagogical experiments that manipulate instructional experience,

and therefore the ITS paradigm provides a particularly fruitful way to implement

such experiments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

The cognitive modeling approach has also been proposed as a

reasonable methodology for acquiring a working expert system (Anderson,

1988; Slatter, 1987). Although the constraint of being true to human behavior

has been more of a burden than a stimulus, it has also been argued that, by

closely mapping between human behavior and cognitive models, it is possible

to augment psychological theory and computer science technology as well

(VanLehn, 1991).

This study uses the cognitive modeling methodology in its attempt to

develop a cognitive diagnosis system. The cognitive modeling methodology is

advocated in this study because the methodology allows to build more

descriptively valid and also powerful representations of users. The

methodology used in this study, however, is different from the traditional

cognitive modeling methodology which typically relies on various process

tracing methods in order to construct a computational model. In traditional

cognitive modeling studies, theories of human information process are

constructed typically by analyzing verbal protocols (e.g., Newell and Simon,

1972; Klahr and Wallace, 1976). In this case, theory construction is bottom-up,

i.e., from data to theories. In contrast, this study takes the perspective of unified

theory, in which theory construction is top-down. In the unified theory approach,

theories are embedded into a system and behaviors of a system are compared

to data. This study attempts to integrate three theories of HIP and build them

into a system, PSCD. These three theories are heuristic search (Newell and

Simon, 1976), production system architecture (Klar et al., 1987), and

constructivism (Resnick, 1982; Payne and Squibb, 1990).

Unified theories are implemented in cognitive architectures. A cognitive

architecture or functional architecture is a fundamental design specification of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

an information processing system (Pylyshin, 1984). A cognitive architecture

describes the part of HIP that do not change. The notion of architecture

differentiates two parts of HIP, the part that changes rapidly and the other part

that changes slowly if at all (VanLehn, 1991). Hence, a cognitive architecture is

a partial description of a human information processing system (HIP), but

describes the essential aspects of HIP. This study proposes that three theories

considered in this study must be the part of a cognitive architecture.

1.3 Overview

This study integrates three theories of HIP and implement them in PSCD,

an architecture for cognitive diagnosis (Figure 1.2). Since these three theories

act as constraints in setting the design specification of PSCD in the huge space

of alternative designs, they are also called constraints in this study. Two

constraints come from major hypotheses that have emerged in cognitive

science in the past decade. The first hypothesis is that heuristic search is a

fundamental process of HIP (Newell and Simon, 1976; Newell, 1990). The

second is that a production system is the architecture of HIP system (Langley,

1983b; Klar et al., 1987; Newell, 1990). In Chapters 2 and 3, these concepts

will be defined and explained.

Constructivism is another constraint imbedded in this model. Underlying

diverse research done by cognitive, developmental, and educational

psychologists is the so-called constructivist assumption about how skills are

learned (Gelman and Meek, 1986; Resnick, 1984; Brown and VanLehn, 1980;

Smith et al., 1989). The constructivist assumption states that knowledge is not

directly absorbed but is constructed by each individual. In this view, knowledge

is no longer viewed as a reflection of what has been given from the outside; it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

a personal construction from experience and what the individual knows. This

construction can be either syntactic (Brown and VanLehn, 1980; Young and

O'Shea, 1981) or semantic in nature (Smith et al., 1989; Ohlsson and Rees,

1991). A through review of empirical data and conceptual studies has led to the

conclusion that semantic construction is more fundamental in explaining human

skill acquisition and performance. This constraint will be discussed in Chapters

4 and 5.

With these constraints in mind, various methodologies of cognitive

diagnosis are reviewed in chapter 5. Three constraints and implementing

methodologies are finally integrated in Chapter 6. In this chapter, PSCD is

formally proposed. Then PSCD is applied to two different tasks for its

validation. Chapter 7 discusses some validation issues and presents the

results of these applications in Chapter 7. Finally limitations of this study and

future directions are discussed in Chapter 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

Figure 1.2. Overview

7. Validation

1. Introduction

4. Constructivism3. Production System2. Heuristic Search

6. A Model of Cognitive Diagnosis

5. Methodologies of Cognitive Diagnosis

8. Limitations, Implications & Future Directions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

Chapter 2 The Heuristic Search Constraint

The heuristic search constraint states that intelligence involves heuristic

search (Langley, 1983b; Card et al., 1983). Heuristic search is the major

hypothesis in cognitive science. This chapter provides grounds for the use of

heuristic search as a constraint in PSCD. Since the concept of heuristic search

emerges in cognitive science studies, perspectives of cognitive science are

introduced (Section 2.1) and then concepts underlying heuristic search are

discussed. The hypothesis of heuristic search is based on three hypotheses

that have taken a significant role in many cognitive studies. These hypotheses

are the physical symbol system hypothesis (Section 2.2), the problem space

hypothesis (Section 2.3), and the bounded rationality hypothesis (Section 2.4),

and discussed in the respective section. Finally, Section 2.6 summarized

arguments for heuristic search.

2.1 Cognitive Science

The term "cognitive science" has been used in various studies, mostly in

artificial intelligence and psychology studies, in a number of different ways

(Posner, 1989; Kintsch et al., 1984; Pylyshyn, 1984). Generally, cognitive

science is viewed as dealing with the nature of intelligence from the perspective

of computation (Posner, 1989). Simon (1989, p. 2) defined cognitive science as

"the study of intelligence and its computational processes in humans (and

animals), in computers, and in the abstract." This definition shows that the

scope of cognitive science studies covers human, computer, and abstract

intelligence. Simon provided examples of studies for each category. He

regarded experimental and cognitive psychology as an example of the

computational study of organismic intelligence because it studies those forms of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15

intelligence exhibited by people, rats, and pigeons in the laboratory. Computer

science, especially the branch of computer science called "artificial

intelligence", is provided as an example of the study of intelligence exhibited by

machines. Some examples of the study of intelligence in the abstract are formal

logic, statistical decision theory, and the theory of maximization of expected

utility. This study falls in the category of the study of organismic intelligence

because of its concern with human learning and problem solving.

An important word in Simon's definition of cognitive science is

"computation." The computational view of cognition is seen as the fundamental

assumption in cognitive science (Pylyshyn, 1980, 1984). The view that

cognition can be understood as computation is ubiquitous in modern cognitive

theorizing, even among those who do not use computer programs to express

models of cognitive processes. There has been much discussion whether the

human mind can be understood as computation (Simon and Newell, 1972;

Pylyshyn, 1984; Anderson, 1983; Newell, 1990; Simon, 1990). Simon and

Newell, together and independently, have supplied strong rationales for

cognitive science from its inception, and even guided cognitive science

research.

The computational view of cognition is based on several assumptions.

First, both computers and human cognitions are artifacts that adapt to their outer

environments in order to satisfy their goals within the limitations of the inner

systems (Simon, 1979). The inner system is a organization of the system

capable of attaining goals. Since they are artifacts, they both are subject to

design. In other words, if the inner system of a system is properly designed, it

will be adapted to the outer environment. Second, computer simulation, or

often called computational modeling, is a useful methodology to explore

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

alternative organizational assumptions. Computational modeling is a technique

for understanding and predicting the behavior of systems. Simon provided two

reasons why computational modeling is useful in finding the laws of behavior

governing components. The reasons are that first,, only a few properties

abstracted from the complex reality are of interest. The more are abstracted

from the detail of a set of phenomena, the easier to simulate. Second, it is not

necessary to know entire internal structure but only that part of it that is crucial to

the abstraction. Therefore, without identity of the inner systems, simulation is

possible because the aspects of interest arise out of the organization of the

parts, independent of all but a few properties of the individual components.

From the pioneering works of Simon and Newell, many studies have

been conducted in the fields of artificial intelligence and cognitive psychology.

Due to extensive interactions and collaborations between these two fields,

these two fields collectively merge into a new field known as cognitive science.

2.2 The Physical Symbol System Hypothesis

In studying artifacts with the computational modeling methodology, the

notions of symbol structures and formal operations are important. In the

simplest terms, a symbol is something that stands for something else. This

something else is usually called the designation of the symbol. It is the thing that

the symbol represents. The designation may be a physical object or a concept,

but the symbol itself is physical.

The idea behind symbolic computation is that symbols stand for anything

at all. Typically a symbolic program takes as its input one or more symbol

structures, representing the initial state of some problem, and returns as its .

output a symbol structure, representing a terminal state of solution. A symbol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

structure is both well-formed in terms of the syntactic rules (which are used to

form symbol structures out of symbols in such a way that the resulting structures

have a meaning) and has been derived by the application of legal

transformations (which turn symbol structures into other symbol structures).

A pioneering study by Newell and Simon (1976), which facilitated the

development of the computational view of mind, proposed a physical symbol

system hypothesis. The physical symbol system hypothesis is stated as follows:

Physical Symbol System Hypothesis. A physical symbol system has the
necessary and sufficient means for general intelligent action

A physical symbol system is a machine, located in some environment,

with a memory, operators, control, and an input, and over time, it produces an

evolving collection of symbol structures. The condition of "necessary" means

that any system that exhibits general intelligence will prove to be a physical

symbol system. The condition of "sufficient" means that any physical symbol

system of sufficient size can be organized further to exhibit general intelligence.

From these claims follow two empirical hypotheses: 1. that computers can be

programmed to think (sufficient), and 2. that the human brain is a physical

symbol system (necessary). These hypotheses are tested by programming

computers to perform the same tasks that researchers used to judge how well

people are thinking, and then by showing that the processes used by the

computer programs are the same as those used by people performing these

tasks. Thinking-aloud protocols, records of eye movement, reaction times, and

many other kinds of data are used as evidence to make the comparison. Simon

(1990) argued that the physical symbol system hypothesis has been tested so

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

extensively over the past 30 years that it can now be regarded as fully

established.

The hypothesis dictates that human cognition can be realizable in a

physical symbol system because a computer is a member of a family of artifacts

called physical symbol system as human cognition does.

2.3 The Problem Space Hypothesis

Newell (1980, 1990) argued that the problem space representation

fundamental to all physical symbol systems, including ail categories of cognition

such as reasoning (Johnson-Laird, 1983; Johnson-Laird, 1990), problem

solving (Newell and Simon, 1972; Simon, 1983), and decision processes

(Slovic et al, 1977; Kahneman et al., 1982). Newell and Simon (1972) derived

the concept of a problem space from extensive work in artificial intelligence, and

provided a prototypic example of the concept. Since then, many studies

characterized as heuristic search have analyzed problem solving tasks in

problem space terms. The problem space hypothesis is stated formally as

follows (Newell, 1980):

Problem Space Hypothesis. The fundamental organizational unit of all
human goal-oriented symbols activity is the problem space.

Problem Space. A problem space consists of a set of symbolic structures
(the states of the space) and a set of operators over the space. Each
operator takes a state as input and produces a state as output, although
there may be other inputs and outputs as well. The operators may be
partial (i.e., not defined for all states). Sequences of operators define paths
that thread their way through sequences of states.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19
Problem. A problem in a problem space consists of a set of initial states, a
set of goal states, and a set of path constraints. The problem is to find a path
through the space that starts at any initial state, passes only along paths
that satisfy the path constraints, and ends at any goal state.

Given a problem in a problem space, the only way a system can solve

the problem is by searching in the space, working out from the current state by

applying operators, adding new states to the stock to be used at new points of

search, evaluating whether the result help, etc. Accomplishing this search

requires performing repeatedly a fixed set of functions, namely search control.

A search system can thus be defined as a problem-solving system consisting of

three main components: a database, operators, and control strategy (Barr and

Feigenbaum, 1981). A database describes both the current task-domain

situation and the goal. The database can have a variety of data structures

including arrays, lists, sets of predicate calculus expressions, property list

structures, and semantic networks. The second component of a search system

is a set of operators used to manipulate the database. The third component of a

search system is a control strategy for deciding what to do next—in particular

what operator to apply and where to apply it.

A search space represents the structure of a problem in terms of the

alternatives available at each possible state of the problem. The basic idea is

that from a given state in a problem, all-possible next states can be determined

with a small set of rules, called transition operators. For example, in a chess

game, the original state is the board position at the beginning of the game. The

legal-move generators correspond to the rules for moving each piece. So all of

the next states of the game (i.e., the board configurations after each of White's

possible first moves) can be generated by applying the move generators to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

original positions of the pieces. Similarly, all the possible states after Black's

first response can be generated.

A somewhat straightforward way to find the winning move is to try all the

alternative moves, then try all the opponent's responses to these moves, and

then try all the possible responses to those, until all the possible continuations

of the game have been exhausted and it is clear which was optimal. The

problem with this solution is that, for interesting problems like chess, there are

far too many possible combinations of moves to try in a reasonable amount of

time on a machine of conceivable computational power. This problem, called

combinatorial explosion, is an important general difficulty for Al systems in all

applications.

2.4 The Bounded Rationality Hypothesis

The problem of combinatorial explosion shows the limitation of a physical

symbol system in adapting its behavior to the requirements of a given task. This

limitation arises because the inner environment of the system places limits on

the kinds of information processing which the system is capable of. In the case

of computers, adaptiveness is limited by the theorems of Godel, which prove

that every symbol processing system must be incomplete. Far more important

than the Godel limits, Simon (1976) argued, are the limits imposed by the speed

and organization of a system's computations, and sizes of its memories. For

example, playing a perfect game of chess by using the game-theoretic

minimaxing algorithm is one such infeasible computation, for it calls for the

examination of more chess positions than there are molecules in the universe.

Similarly, studies of human cognition have revealed that computational

capabilities of the human mind are limited because of the limited capacity of

short-term memory and the time required to fixate an item. The facts that human

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

short-term memory can hold only a half dozen chunks that an act of recognition

takes nearly a second, and that the simplest human reactions are measured in

tens and hundreds of milliseconds instead of microseconds or picoseconds are

basic physiological constants that determine what kinds of computations are

feasible in a given type Of task situation and how rapidly they can be carried out.

From these facts, Simon (1955) proposed one of the essential laws of

qualitative structure applying to physical symbol systems, including computers

and the human brain, namely bounded rationality.

Bounded Rationality. Because of the limits on their computing speeds and
power, intelligent systems must use approximate methods to handle most
tasks.

2.5 The Heuristic Search Hypothesis

A major way to relax the limits of bounded rationality and to overcome the

problem of combinatorial explosion is to store in long-term memory knowledge

and strategies that reduce the computational requirements of tasks. In tasks of

any complexity, knowledge and strategies do not allow the expert to find an

optimal solution, but only to find approximations far better than those available

to native (or naive) intelligence. Simon (1990) suggested that it is possible that

some common properties, deriving from human bounded rationality, are shared

by the approximating procedures people use in many kinds of complex

situations.

Knowledge and strategies take a role of limiting the number of

alternatives searched at each stage of the look-ahead process to the best

possibilities. Newell (1990, pp. 98-100) called this type of search as knowledge

search, which is "the search in the memory of the system for the knowledge to

guide the problem search," and distinguished it from problem search, which is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

"the search of the problem space." According to Newell, knowledge search

happens in the inner loop of problem search, and it searches for knowledge that

can be used to evaluate operators and to evaluate their consequences, that is,

the resulting new states. Hence, knowledge, often called search control

knowledge, can take a role in evaluating operators as well as in evaluating

states. Newell further observed that one could always transfer knowledge from

the test to the generator, so that new states never were created at all. I.e., there

is a trade-off relationship between knowledge for operators' evaluation and

knowledge for states' evaluation. Wherever knowledge is put in, either in the

generator or in the test, the role of knowledge in problem search is to reduce the

problem space, and consequently to increase efficiency (Minton, 1988).

Consequently, it is hypothesized that physical symbol systems solve problems

by using the processes of heuristic search. More formally, the law is stated as

follows:

Heuristic Search Hypothesis. A physical-symbol system exercises its
intelligence by heuristic search, that is, by generating and progressively
modifying symbol structures with the help of knowledge until it produces a
solution structure.

Similar to the distinction between knowledge search and problem search

is the distinction between generative and evaluative selectivity (Ohlsson and

Rees, 1991). Generative selectivity operates through strategic rules that

propose good moves. Strategic rules improve the efficiency of search by

focusing attention on the most promising actions in each state. Evaluative

selectivity operates through evaluation functions that measure the promise of a

state. Evaluation functions improve the efficiency of search by focusing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23

attention on the most promising states. Confusingly, both strategic rules and

evaluation functions are called heuristics in the literature (Pearl, 1984).

Generative selectivity resides in the procedural knowledge whereas evaluative

selectivity resides in the principled knowledge. The production rules generate

actions, and the state constraints evaluate the states produced by those actions.

The performance of the system is a function of both, and one type of selectivity

can be traded for the other.

2.6 Summary

This chapter provides rationales for heuristic search as a constraint of

PSCD. It is shown that heuristic search is the fundamental process of an

intelligent system. The rationales for heuristic search are based on three

hypotheses. First, the physical symbol system hypothesis states that all

intelligent system belong to the class of physical symbol systems. Second, it is

hypothesized that all physical symbol systems represent problems or tasks as

problem spaces. Third, all physical symbol systems have limitations in

processing capabilities, i.e., have bounded rationality. Integrating these

hypotheses yield the heuristic search hypothesis which states that all physical

symbol systems exercise intelligence by heuristic search through problem

spaces.

Designing a heuristic search system intended to show intelligent

behaviors such as that demonstrated by a human is not simple. A notorious

problem lies in how to represent knowledge (Barr and Feigenbaum, 1981). The

research area of knowledge representation has a long, complex, and as yet

non-convergent history (Brachman and Levesque, 1985). This is basically

nonidentifiability problem, i.e, difficulties in finding an appropriate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

representation and process. Another problem in developing a heuristic search

system is the irrelevant-specification problem (Pylyshyn, 1984; VanLehn, 1984;

Kieras, 1985; Neches, 1982). Because a cognitive model attempts to emulate

humans' cognitive processes, the computer program of the cognitive model will

contain codes motivated by psychological assumptions about the humans'

cognitive processes. The computer program may also contain codes which are

not motivated by psychological assumptions but are written for convenience.

When the computer program includes the convenience code, the problem is

that, because of the interaction between the motivated code and the

convenience code, one has no guarantee that the behavior of the program

depends on the motivated code. A solution to this irrelevant-specification

problem as well as the nonidentifiability problem is to distinguish an

architecture from a program (Newell, 1973; Newell, 1990). An architecture is

the fundamental design specification of an information processing system, and

is based on psychological hypotheses. The architecture provides

psychologically motivated programming language. Therefore, a program

written in the architecture may not contain any convenience code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25
Chapter 3 THE PRODUCTION SYSTEM CONSTRAINT

Production system architecture is the second constraint for PSCD. A

production system can be viewed as a basic architecture which provides a

basic structure for more integrated architecture, for instance Newell's SOAR

(1990) and Anderson's ACT* (1983). There are several basic cognitive

architectures in cognitive science. Among them are schema architectures (e.g.,

Schank and Abelson, 1977; Riesbeck and Schank, 1989), neural architectures

(e.g., Rumelhart and McClelland, 1986), and production system architectures

(e.g., Newell and Simon, 1972; Newell, 1973b; Anderson, 1983; Newell, 1990).

This chapter discusses a production system architecture (Section 3.1.1).

Production system architectures are described along with schemata

architectures, which has been considered as the major alternative (Section

3.1.2), and advantages of production system architectures are discussed

(Section 3.1.3). Relationships between production system architectures and

heuristic search are discussed in Section 3.2.

3.1 Production Systems as Cognitive Architectures

Production systems have been extensively used in cognitive theorizing

(Langley, 1983b; Anderson, 1983; Newell, 1990). Production systems have

been a primary cognitive architecture, along with schema theories. In the

following subsections, a production system architecture and a schema

architecture are compared and discussed in detail.

3.1.1 Production Systems

The basic claim of production systems is that underlying human cognition

is a set of condition-action pairs called productions. The condition specifies

some data patterns, and if elements matching these patterns are in working

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

memory, then the production can apply. The action specifies what to do in that

state. The basic action is to add new data elements to working memory.

Production systems can be traced back to the proposals of Post (1943),

but Post production systems have little in common with current production

systems except the notion of condition-action pairs, called productions. Modern

production systems began with the work of Newell (1973), Newell and Simon

(1972), and Waterman (1970). Newell and Simon (1972) first proposed

production systems as one way to formulate information processing theories of

human problem solving behavior. They initially used the production system,

PSG, to provide theoretical accounts of human performance on a variety of

puzzles. Klahr and Wallace (1972) used a production system to model

children's responses to class-inclusion questions. It soon became apparent

that production systems were well suited for dealing with issues of development

(Klahr and Wallace, 1976) and learning (Waterman, 1970). Waterman (1970)

implemented an adaptive production system to play the game of draw poker.

The program was adaptive in that it automatically changed the productions in its

rule base. This automatic revision or addition of new rules is viewed as

learning. Several, different adaptive production systems have been developed

to model human learning (Anderson et al., 1981; Anzai and Simon, 1979;

Langley, 1983a; Klahr et al., 1987).

The concept of a production system is vague and hard to define.

Computer scientists would regard production systems as a variant of deductive

retrieval systems. In computer science there is a more general category, called

pattern-directed systems (Waterman and Hayes-Roth, 1978), which include

schema systems as well as production systems. To psychologists, production

systems could be a formalism to state theories of HIP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

In its most basic form a production system consists of two interacting data

structures (working memory and production memory), connected through a

simple processing cycle (recognize-act-cycle) (Neches et al., 1987). The

following description of a basic production system is taken from Neches et al.

(1987). The two interacting data structures are:

1. A working memory having a collection of symbolic data items called
working memory elements.

2. A production memory consisting of condition-action rules called
production, whose conditions describe configurations of element that
might appear in working memory and whose actions specify
modifications to the contents of working memory.

Production memory and working memory are related through the

recognize-act-cycle. This consists of three distinct stages:

1. The match process, which finds productions whose conditions match
against the current state of working memory; the same rule may match
against the current state of working memory in different ways, and each
such mapping is called an instantiation.

2. The conflict resolution process, which selects one or more of the
instantiated productions for applications.

3. The act process, which applies the instantiated actions of the selected
rules, thus modifying the contents of working memory.

The basic recognize-act process operates in cycles, with one or more

rules being selected and applied, the new contents of memory leading another

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28

set of rules to be applied. This cycling continues until no rules are matched or

until an explicit halt command is encountered.

Suppose there is a production system with one production rule and

working memory elements as shown in Figure 3.1. The single production and

working memory elements are represented in the OPS5 programming

language (Brownston et al, 1985). The rule, FindAncestors, finds and prints the

ancestors, matching and firing so long as there are still Request elements and

matching people. The rule should terminate when there are no longer any

matching people to print as ancestors. An English description of the rule is as

follows:

IF there is a request to find the ancestor of <myparent> (not nil)
and there is a person whose name is <myparent>

THEN
remove the Request
and print a message that the <mother-name> and <father-name> of <my-

parents> are ancestors through <myparent>
and create two new Requests to find the ancestors of the <mother-name>

and the <father-name>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 3.1. An example of a production system

< Production memory >

(p FindAncestors
{(Request Atype ancestor Atarget {<myparents> o nil}) <request1>)
(Person Aname <myparents> Amother <mother-name> Afather <father-

name>)
- - >

(remove <request1>)
(write (crlf) <mother-name> and <father-name> are ancestors via

<myparents>)
(make Request Atype ancestor Atarget <mother-name>)
(make Request Atype ancestor Atarget <father-name>)

< Working Memory >

1: (Person Aname Penelope Amother Jessica Afather Jeremy)
2: (Person Aname Jessica Amother Mary-Elizabeth Afather Homer)
3: (Person Aname Jeremy Amother Jenny Afather Steven)
4: (Person Aname Steven Amother Loree)
5: (Person Aname Loree Afather Jason)
6: (Person Aname Homer Amother Stephanie)
7: (Request Atype ancestor Atarget Penelope)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Let us consider what will happen when we start the production system

running with the two production rules in Figure 3.1. Matching the production

FindAncestors to working memory elements results in an instantiation with

variable bindings ((<name> Penelope)(<mother-name> Jessica)(<father-

name> Jeremy)). Firing the instantiation removes the element (Request Atype

ancestor Atarget Penelope) and adds two elements to working memory: 8:

(Request Atype ancestor Atarget Jessica) and 9: (Request Atype ancestor

Atarget Jeremy).

At the next cycle, there are two instantiations of the rule FindAncestors:

one matching Jeremy and one matching Jessica. One of the most common

conflict resolution strategies is recency, in which an instantiation with the most

recent element in working memory is selected for execution. With the recency

strategy, the instantiation matching the Request for the ancestors of Jeremy will

be selected because it matches the most recent working memory element.

The basic production system consists of a working memory, a production

memory, and conflict resolution. Within this basic framework of a production

system, there can be many variations. There is a class of production systems

called adaptive production systems (Waterman, 1975; Neches et al., 1987).

Adaptive production systems contain a learning mechanism as well as the basic

components of production systems in order to model human learning and

development. Another class of production systems is controlled production

systems which allow control knowledge to be directly represented using a

control language (Georgeff, 1982). Still another class of production systems

utilizes meta-level knowledge (Davis and Buchanan, 1984; Clancey, 1983).

These various types of production systems will be discussed in relation with

search in Section 3.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31
3.1.2 A Schema Architecture

Production systems are not the only kind of cognitive architectures since

generality and computational universality can be achieved in very different

architectures. The most commonly offered alternatives to production systems

are the schema architecture (e.g., Minsky, 1975; Schank and Abelson, 1977;

Rumelhart et al., 1986). The term schema is used more by psychologists and

cognitive scientists than by Al researchers. The schema architecture view

intelligence as being based on the associationistic properties of knowledge, i.e.,

the units of knowledge tend to be not elementary facts but cohesive clusters of

related facts. In Al, terms such as frame and script tend to be used more

frequently. Partridge (1991) commented that a schema may be more of an

abstract knowledge representation unit, while frames and scripts tend to be

more concrete, even if they are not always part of an implemented and working

system. The term schema will be used in this study to refer to all of forms of

structured representation, including frames, scripts, and schemata.

The two major components of the schema framework are a working

memory and a schema memory. The major control cycle of the system involves

matching schemata to the contents of working memory. A schema can be a

fancy record structure, such as in frame. A frame is a collection of data items

that possess some similarity. For example, a chair record might be a collection

of data items such as color, number of legs, height, etc. In addition the chair

frame contain links to more general concepts such as furniture. The chair frame

will also have links to more specialized frames such as an arm-chair frame.

This type of link is called isa, which says that one class is a more general

version of another. If we want to denote a particular chair, say black chair at my

office, we can construct a frame and name it, say chair-1. The chair-1 frame

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

also can be linked to the chair frame. This type of link is denoted as inst, which

says that a particular individual is a member (or instance) of some class. If,

when constructing the chair-1 frame, there is no explicit statement of how many

legs this particular chair has, then a default value of four in the chair frame can

be used to fill in the number-of-legs slot of the chair-1 frame. Thus, in general, if

a schema is partially matched by the information in working memory it will

create further information to complete this match. It is frequently proposed that

an instantiated schema like chair-1 can be deposited in schema memory and

then serve as a new more specific schema. An object is recognized by having

its schema match the representation in working memory. Thus, recognition is a

basic force.

This schema structure would lead to a computationally universal system,

so it is certainly capable of producing humanlike cognition. Moreover, a

number of empirical phenomena are suggestive of schema operation (Minsky,

1975). Despite all of these contentions, schema theories have many

unsatisfactory properties. Anderson (1983) pointed out three problems

associated with schema theories. First, the schema structure blurs the

distinction between procedural and declarative knowledge. It has been argued

that the procedural-declarative distinction is fundamental in many psychology

studies (Anderson, 1983; Ohlsson and Rees, 1991; Hiebert and Lefevre, 1986).

in addition Anderson (1983) argued that the distinction is useful in capturing the

conditional directionality of human thinking. For example, from the fact that the

light is green one wants to infer that one can walk. Using the schema

architecture to represent the above fact risks the incorrect inference that the light

is green from the fact that one is walking. This incorrect inference is possible in

schema theories because it is possible to instantiate any part and execute any

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

other part. In other words, schemata are symmetric. In a production system, on

the other hand, this asymmetric conditionality can be easily achieved by the

condition-action productions, that is, one can only go from the instantiation of

the condition to the execution of the action, not from the action to the condition.

In general, declarative knowledge is more flexible but inefficient, whereas

procedural knowledge is less flexible but efficient because it captures efficiency

in its structure and direction of information flow. Schemata are more like

declarative and are flexible. However, as mentioned above, although the

symmetry of schemata may be a source of flexibility, it can lead to problems

such as incorrect inference.

A second problem is that the units of knowledge in the schema

architecture tend to be large, thus not allowing the ability to combine information

in new ways from smaller units. This ability is argued as a hallmark of human

intelligence (Anderson, 1983). Lastly, the size of schemata also makes it

difficult to construct effective theories about their acquisition. Technically, it is

difficult to construct learning mechanisms that can deal with the full range of

schema complexity. Empirically, it is transparent that learning is gradual and

does not proceed in schema-sized jumps. This has led schema theorists

(Rumelhart and Norman, 1981) to propose that we never learn new schemata

but only modifications of existing ones.

It is possible to model systematic errors with the schema architecture. In

the schema architecture, errors can arise (a) from fitting the data to the wrong

schemata, (b) from matching the correct schema too enthusiastically so that

unmatched portions are filled with best guesses rather than available

information, and (c) from relying too heavily on active or salient schemata

(Reason, 1990). Most of these errors can happen because of a property

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

associated with schemata theories: a schema only contains information of how

a particular recollection of information should appear, but has no information of

what it should not look like. It is intuitively clear that people frequently recognize

events by identifying that they belong to a generic concept that represents them.

It may also be the case that people's belief about what a concept does not look

like do help prevent them committing errors. What is missing in schemata

theories is such a mechanism.

3.1.3 Why Production Systems?

The production system architecture has been used extensively in

cognitive science studies (Newell and Simon, 1972; Anderson, 1983; Newell,

1990; Neches et al., 1987). There are many good reasons for taking the

production system architecture as a good framework for modeling human

thinking. Neches et al. (1987) lists six advantages of production system models:

Homogeneity. Production systems represent knowledge in a very
homogeneous format, with each rule having the same basic structure
and carrying approximately the same amount of information. This makes
them much easier to handle than traditional diagram.

Independence. Production rules are relatively independent of each
other, making it easy to insert new rules or remove old ones. This makes
them very useful for modeling successive stages in a developmental
sequence and also makes them attractive for modeling the incremental
nature of much of human learning.

Parallel/Serial nature. Production systems combine the notion of a
parallel recognition process with a serial application process; both
features seem to be characteristic of human cognition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35
Stimulus-response flavor. Production systems inherit many of the
benefits of stimulus-response theory but few of the limitations, since the
notions of stimuli and responses have been extended to include internal
symbol structures.

Goal-driven behavior. Production systems can also be used to model the
goal-driven character of much of human behavior. However, such
behavior need not be rigidly enforced; new information from the
environment can interrupt processing of the current goal.

Modeling memory. The production-system framework offers a viable
model of long-term memory and its relation to short-term memory, since
the matching and conflict resolution processes embody principles of
retrieval and focus of attention.

Anderson (1987) argued for the production system architecture in

modeling skill acquisition. He observed that production rules are relatively well

structured, simple and homogeneous, and independent of one another. In

being well structured, they contrast with theoretical formalisms such as neural

models (McClelland and Rumelhart, 1986). This helps guarantee that the

behavior produced by learning production rules will be coherent. In being

simple and homogeneous, they contrast with many of the proposals for schema

systems (Schank and Abelson, 1977). Their simplicity and homogeneity make

it possible to define relatively simple learning mechanisms capable of

constructing new rules. In being independent, they contrast with a typical

programming language in which operations are sequentially ordered and

depend on one another. In contrast, it is possible to add or delete production

rules individually without greatly perturbing the system. This independence of

production rules makes it possible to define an incremental learning system that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

grows one production rule at a time and does not involve wholesale changes to

the cognitive procedures.

Viewed from the perspective of cognitive diagnosis, production systems

have a better capability of modeling errors at a fine-grained level than do

schemata theories. In production systems, errors can occur when a production

fails to fire when it should (errors of omission) or a production fires when it

should not (errors of commission) (Newell and Simon, 1972; Bundy and Silver,

1982). An error of commission occur when a production is overly specific and

does not match even when it should. Such a production system will be

conservative. It would make no bad moves and would miss some good moves.

An error of omission would occur when a production is overly general and

matches situations when it should not. The production system will be a rash

one, omitting few desirable moves but considering many undesirable ones as

well. Production systems thus are able to model a broad spectrum of errors,

from conservative to rash.

3.2 Search and Production Systems

From the perspective of problem space and heuristic search, problem

solving in production systems can be viewed as attempts to find a path linking

the initial state to the goal state (Newell and Simon, 1972; Anderson, 1983).

Actually production systems are computationally universal and hence can be

used to model any computable procedure, including search. Since problem

solving is viewed as searching for a path through a problem space from an

initial state to a goal state, the process of solving the problem can be modeled

as a production system (Rich, 1983) Three components of a search system (i.e.,

database, operators, and control) are well mapped into three components of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

production system (working-memory, production memory, and conflict

resolution). A database is analogous to a working-memory, operators to

productions and control to conflict resolution.

As in a search system, a production system needs knowledge to avoid

the problem of combinatorial explosion. In a production system, knowledge can

be put in various ways. Knowledge can be domain-dependent or domain-

independent. Domain-dependent knowledge can be represented in the form of

conditions of productions (Langley, 1985). This representation will increase

generative selectivity. Another way of representing domain-dependent

knowledge uses an augmented mechanism. For example domain-dependent

knowledge can be represented in state constraints, an augmented mechanism

to a basic production system, that will increase evaluative selectivity (Ohlsson

and Rees, 1991). Domain-dependent knowledge also can be represented as

meta-rules, i.e., rules about rules, that will increase generative selectivity.

Domain-independent knowledge ranges from as simple as weak-methods

(Newell, 1969), to conflict-resolution principles (McDermott and Forgy, 1978),

and to meta-strategies (Clancey, 1983). These various methods are discussed

below.

Depth-first search starts at the root of the problem-space tree and work

down the leftmost branch to the end-node before embarking on any other

branch. Depth-first search does not guarantee to identify the shortest path to

the solution. In breadth-first search, all of the nodes in the problem-space tree

at depth 1 are developed first, then all of the nodes at depth 2 are developed

and so on. Breadth-first search overcomes the problem associated with depth-

first search and finds the shortest path solution. However, the breadth-first

search can involve huge overhead: at any stage, all nodes to the left and all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38

nodes above the node being developed must be memorized. A more efficient

method is heuristic search. Contrary to depth-first and breadth-first search,

heuristic search uses heuristics to improve the quality of the paths that are

explored. Some heuristics are general in that they are useful in a wide variety

of problem domains. Control strategies that use general-purpose heuristics are

often called weak methods. Weak methods include generate and test, hill

climbing, best-first search, and etc. In production systems, analogous to conflict

strategies is conflict resolution. McDermott and Forgy (1978) proposed a set of

domain-independent conflict resolution principles.

General-purpose heuristics usually are coupled with domain-specific,

special-purpose heuristics to work well in a specific domain. Domain specific

heuristics can be incorporated into a rule-based search procedure in two major

ways: in the rules themselves and as a heuristic function (Rich, 1983, p. 71). A

heuristic function is a function that measures desirability, usually represented as

numbers, of individual problem states in leading to the goal state. The purpose

of a heuristic function, therefore, is to guide the search process in the most

desirable direction, by suggesting which path to follow first when more than one

is available.

Domain-specific information can be incorporated into rules. One way is

to devise rules about rules (Davis et al., 1977; Davis and Buchanan, 1984).

Davis et al. (1977) represented certain types of heuristic search strategy

knowledge as meta-rules. Figure 3.2 shows an example of such meta-rules.

Such meta-rules, which are invoked as part of the conflict resolution strategy,

can capture and implement strategic knowledge about a domain. Clancey

(1983), however, pointed out that meta-rules such as the one above have the

disadvantage that they mix the domain-dependent and domain-independent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

strategic principles that underlie them. The implicit strategic domain-dependent

principle which underlies the rule above is that the most frequent causes of a

disorder should be considered first. The implicit domain-independent principle

which underlies the rule above is that the most useful rule should be applied

first. Clancey (1983,1988) argued that different types of knowledge must be

represented separately and explicitly in order to provide sensible explanations

to users.

Figure 3.2. An example of meta-rules

If the infection is pelvic abscess and
there are rules which mention enterobacteriacea in their premises and
there are rules which mention gram-pos-rods in their premises

Then there is suggestive evidence (0.4) that the former rules should be applied
before the latter.

Georgeff (1982) has proposed a controlled production system

architecture that allows control knowledge to be directly represented using a

control language. The architecture is based on the explicit specification of

constraints on rule invocation. In Georgeff's scheme, control knowledge is

represented by a language, with which we can specify the set of all allowable

sequences of rules. Georgeff calls this language a "control language." For

example, suppose that the control language is defined by the following regular

expression: R1 (R2R3R4)* R5R6R7 where the asterisk indicates repetition of

the bracketed group. The only allowed rule sequences would be: R1, followed

by the sequence R2R3R4 repeated an arbitrary number of times, followed by

the sequence R5R6R7. The restriction imposed by the control language can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

invoked either when the set of applicable rules is being identified or as part of

the conflict resolution strategy.

Another way of incorporating domain-specific information to rules is to

find appropriate conditions for rules and have them make sensible moves. It

has been argued that finding those conditions is relatively hard and that we can

use some learning mechanisms to identify those conditions (Langley, 1985).

The class of production systems that use learning mechanisms to gain powerful

knowledge about the problem which would reduce search efforts are called

adaptive production systems. Since these systems usually aim at learning

search strategies, they are also called strategy learning systems (Langley,

1983a, 1985). Strategy learning systems will be discussed in detail in Chapter

5.

3.3 Summary

This chapter discusses a production system architecture and argued for a

production system architecture as a sound basis for PSCD. Three problems of

schema architectures are discussed along with capabilities of a production

system architecture. A production system framework is particularly advocated

due to its superior abilities in modeling errors and learning. These abilities are

necessary for cognitive diagnosis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41
Chapter 4 THE CONSTRUCTIVIST CONSTRAINT

The final constraint that are built into PSCD is the notion of constructivist.

The constructivist assumption is a major hypothesis in many cognitive,

developmental, and educational studies. The constructivist assumption

differentiates two types of knowledge: procedural knowledge and conceptual

knowledge (Hiebert and Lefevre, 1986). Procedural knowledge consists of a

collection of procedures, and conceptual knowledge consists of a set of

principles. Procedural knowledge represents the type of knowledge executable

easily, and its execution generates observable performance (Figure 4.1).

Conceptual knowledge, on the other hand, represents the type of knowledge

that can not be easily executable, but typically be incorporated or constructed

into procedures.

Figure 4.1. Principles, procedures, and performances

Principle — ► Procedure — ► Performance

In the constructivist view, observable performance result from executing a

procedure, which in turn is based on principles of conceptual knowledge. The

constructivist assumption states that new knowledge is not directly absorbed but

is learned through the construction or integration of new knowledge with

previous knowledge (Resnick, 1983). It is also found that people tend to invent

a procedure from what they know and use that procedure to act on the problem

at hand (Resnick and Gelman, 1984). Errors are viewed resulting from the use

of such procedures constructed in hasty.

The notion of constructivism is of importance in this study because it

identifies the source of errors as the construction process of procedures. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42

chapter describes the constructivist constraint of PSCD in detail. The

distinction between procedural and conceptual knowledge and the notion of

constructivism are discussed in Section 4.1. Section 4.2 summarize the

discussion.

4.1 Principles and Procedures

As stated earlier, the distinction between principles and procedures is

important in the constructivist assumption. Similar distinctions to the distinction

of principles and procedures can be found in many other disciplines. For

example, in linguistics, Chomsky (1967) distinguished between competence

and performance, and in cognitive development, Piaget (1978) distinguished

between conceptual understanding and successful action. In cognitive

psychology, Tulving (1983) distinguished between semantic memory and

episodic memory; and Anderson (1976) distinguished between declarative and

procedural knowledge. In the context of mathematics education, VanLehn

(1986) distinguished between schematic and teleologic knowledge; Hiebert

and Lefevre (1986) distinguished between conceptual knowledge and

procedural knowledge; Resnick (1982) talked about semantics and syntax;

Gelman and Gallistel (1978) distinguished between principles and skills; and

Baroody and Ginsburg (1986) described differences between meaningful and

mechanical knowledge.

Hiebert and Lefevre (1986) observed that underlying these various types

of knowledge was the distinction between skill and understanding, and argued

that the distinction of conceptual and procedural knowledge drew upon all of

them. In other words, it is this distinction of skilled procedures and

understanding of principles that underlies those various types of knowledge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

According to Hiebert and Lefevre, conceptual knowledge is knowledge that is

rich in relationships and is thought of as a network in which facts and

propositions are linked with each other. Hence, a unit of conceptual knowledge

cannot be an isolated piece of information. It is a part of conceptual knowledge

only if the holder recognizes its relationship to other pieces of information.

Procedural knowledge, on the other hand, consists of knowledge of

forms and knowledge of procedures. Knowledge of forms is a familiarity with

the individual symbols of the system and with the syntactic conventions for

acceptable configurations of symbols. For example, those who possess

knowledge of forms would recognize that the expression 3+5 = (?) is

syntactically acceptable and that 3+ = (?) is not acceptable. Knowledge of

procedures or rules specifies a predetermined sequence of execution on

symbolic (e.g., +,-) or nonsymbolic (e.g., concrete objects or mental images)

objects. Hiebert and Lefevre (1986) suggested that procedure knowledge can

be characterized as production systems (Newell and Simon, 1972) in that for

the completion of a task a set of productions or rules are applied to an initial

state to produce a goal state in a sequential manner. The insight of Hiebert and

Lefevre (1986) appears to be that the primary relationship in procedural

knowledge is "after," which is used to sequence subprocedures and

superprocedures linearly while conceptual knowledge possesses many kinds

of relationships.

Given these two types of knowledge, an important question becomes

relationships between conceptual and procedural knowledge. Determining

relationships between conceptual and procedural knowledge is not simple. A

persistent problem is that conceptual knowledge is difficult to measure directly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44

and consequentially is often inferred through the observation of particular

procedures for which it presumably is a prerequisite.

Carpenter (1986) proposed three possible relationships. The first

hypothesis is that advances in procedural knowledge are driven by broad

advances in conceptual knowledge. The second is that advances in conceptual

knowledge are neither necessary nor sufficient to account for all advances in

procedural knowledge. The third hypothesis agrees with the first in that

advances in procedural skills are linked to conceptual knowledge, but proposes

that the connections are more limited than suggested by the first.

Supporters of the first approach are Riley et al. (1983) and Briars and

Larkin (1984). They attributed development to broad advances in conceptual

knowledge and the linking of procedures to this conceptual knowledge.

Baroody and Ginsburg (1986), however, argued that development of

procedures used to solve addition and subtraction problems was not always

governed by the development of conceptual knowledge, but the application of

certain procedures may lead to conceptual knowledge. Brown and Burton

(1978), Brown and VanLehn (1982), and VanLehn (1986) also argued for

nonnecessity of conceptual knowledge for the development of procedural

knowledge. They argued that children could learn procedures by rote without

relating them to any conceptual knowledge, and some invention in procedures

appeared to occur strictly within the context of procedural knowledge. They

therefore interpreted children's arithmetic errors as resulting from small

perturbations of syntax of arithmetic without reference to semantics (i.e.,

conceptual understanding of principles) of arithmetic. This perspective,

however, has undergone harsh criticism. Prominent opponents to this view of

no relationship of conceptual knowledge to the development of procedural

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

45

knowledge are Resnick (1982, 1983,1984,1989) and Gelman and Meek (1983,

1986).

Gelman and Meek (1983, 1986) argued that some principled

understanding precedes skilled counting both because the data support this

view and because if there were no early competence, children might never

learn to count or do arithmetic. Reviewing relevant research on children's

knowledge and learning of mathematics, Resnick (1983) and Resnick and

Gelman (1984) argued that underlying diverse research done by cognitive,

developmental, and educational psychologists was a so-called constructivist

assumption about how mathematics was learned.

The constructivist assumption states that knowledge is not directly

absorbed but is constructed by each individual. In this view, knowledge is no

longer viewed as a reflection of what has been given from the outside; it is a

personal construction in which the individual imposes meaning by relating bits

of knowledge and experience to some organizing schemata. Here schemata

refers to any interpretive structures brought to the problem (Resnick and

Gelman, 1984). It appears that the term schemata used by Resnick (1983)

refers to a higher concept than the terms like schemata theories which are

meant to include frames, scripts and any other structured object

representations.

It is viewed that people always seem to try to make sense out of the

world, and to create rules for acting in it, even given limited information. They

do not wait until all the information is in before they start to construct a "theory"

to account for what they have before them. In other words, they invent a

procedure from what they know and use that procedure to act on the problem at

hand. It has been shown that implicit in invented procedures is conceptual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

understanding of mathematical principles (Gelman and Meek ,1983, 1986;

Resnick and Neches, 1984). Resnick (1987) and Resnick and Omanson

(1987) provided data which suggested that arithmetic errors by children

resulted from their attempts to invent a procedure which respected all the

information they did have while ignoring a mathematically important constraint

that was apparently not learned.

Gelman and Meek (1986), in addition, argued that knowledge of the

correct principles does not guarantee correct performance. It was hypothesized

that the performance structures are consequences of competence structures,

derived by a planning system (Greeno et al.,1984). In their formulation,

competence has three main knowledge sources: conceptual, procedural, and

utilizational competence. Conceptual competence is the implicit understanding

of general principles of the domain. Procedural competence is understanding

of general principles of action and takes the form of planning heuristics.

Utilizational competence is understanding of relations between features of a

task setting and requirements of performance. In this formulation, performance

depends on procedural and utilizational competence as well as conceptual

competence. Thus, connections between conceptual and procedural

knowledge are established gradually and locally to individual problems on a

piecemeal basis. This conclusion is argued to be consistent with more general

findings from research on cognitive development (Gelman and Meek, 1986;

Carpenter, 1986) and also appears to be consistent with recent studies in

situated cognition (Greeno, 1989). Recently, Smith et al. (1989) built a

computational mechanism, called COUNTPLAN, based on the work of Greeno

etal. (1984).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

More recently, Ohlsson and Rees (1991) proposed a cognitive

mechanism that mediates the facilitation of conceptual knowledge to procedure

acquisition. This mechanism is based on the assumption that conceptual

knowledge facilitates procedure learning. Ohlsson (1986) referred to such

mechanisms that derive procedures from conceptual knowledge as "rational"

learning to distinguish them from "empirical" learning which constructs

procedures on the basis of experience. Ohlsson's (1991) rational learning

mechanism consists of two main components: a representation for conceptual

understanding and computational machinery that maps that understanding onto

a procedure. Ohlsson and Rees (1991) proposed a novel knowledge

representation, called state constraints to represent principled understanding.

Since the computational framework of the state constraint formalism is heuristic

search, the state constraint formalism is of the most relevance to this study. In

the state constraint formalism, principles are represented as state constraints,

and those state constraints act as constraints on possible states of affairs during

the search. The choice of the state constraint theory for PSCD in this study is

due to the heuristic search and production system constraint s. Clarity and

parsimony of the state constraint theory also merits attention in this choice

process.

4.2 Summary

In this chapter, it is argued that the distinction between principled

understanding and procedural knowledge is fundamental in many distinctions

of knowledge found in many other disciplines. Of more importance is the

relationship between two types of knowledge. It is argued that new knowledge .

of procedures is not directly absorbed but is learned through the construction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

process. Understanding of domain principles aids the construction process.

Thus, errors are viewed as arising from using incorrect procedures that are

constructed with incomplete understanding. Incorrect procedures are not just

variants of correct procedures but have roots in incomplete understanding of

domain principles. Errors, procedures, and the role of domain principles in

procedure construction are discussed in detail in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

Chapter 5 METHODOLOGIES OF COGNITIVE DIAGNOSIS

In Chapters 2,3, and 4, three constraints that are incorporated into PSCD

are described. This chapter reviews different methodologies of cognitive

diagnosis and describes relationship with three constraints embedded in

PSCD. Cognitive diagnosis refers to the process of inferring a person's

cognitive state from his performance (Ohlsson, 1986a; Wenger, 1987). The task

of cognitive diagnosis usually involves the construction of a student model

(Figure 5.1). The purpose of the construction is to discover which knowledge,

correct or incorrect, has been used to produce behavior, and which relevant

knowledge has been overlooked. The process of discovering differences of a

student model from an expert model is called differential modeling (Wilkins et

al., 1988). Differential modeling typically produces error descriptions. Error

descriptions provide the basis for the potential remedial instruction. On the

basis of this belief, several computerized diagnostic methods for identifying the

errors of individual learners have appeared in various domains: arithmetic

(Burton, 1982; Ohlsson and Langley, 1988), algebra (Sleeman, 1982),

elementary programming (Johnson, 1986), and LISP programming (Anderson

and Reiser, 1985; Anderson et al., 1984).

Recent studies in ITS progress toward building a program that can

understand what the student is doing (Burns et al., 1991; Clancey, 1987b;

Mandl and Lesgold, 1988; Poison and Richardson, 1988; Sleeman and Brown,

1982). This progress was the result of realization that there was no need to

consider strategies for teaching if we did not understand what the student was

doing (Clancey, 1987). It became the central idea to model the student. This

realization actually called for a detailed model of the student, that is a fine-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.1. Cognitive diagnosis

Learning

Differential Modeling

Expert ModelStudent Model

Error Descriptions

Performance traoes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

grained description of the student than such a coarse-grained model as a

performance measure. An assumption is that tutoring based on on fine

grained student models will be more effective than tutoring based on coarse

grained models. Although this assumption has not been attempted to check

(VanLehn, 1988), it is widely accepted by educational researchers (Self, 1974;

1978; Ohlsson, 1986a; Resnick, 1984) and in recent ITS studies (Clancey,

1987; Anderson, 1988; Johnson, 1986). In Chapter 1, cognitive simulation is

advocated as a better approach in modeling a decision maker or student

because of its ability to produce detailed models of a decision maker. ITS

studies also defend the need of a fine-grained student model.

This chapter discusses different methods of cognitive diagnosis. A

cognitive diagnosis method can be understood as consisting of two processes:

first inferring a student model from performances traces and second producing

error descriptions by comparing a student model and an expert model. ITS

literature suggest two different methodologies for the inference of a student

model: machine learning and planning. In this study, the focus is placed on

studies incorporating models of learning into cognitive diagnosis. Underlying

the focus is the belief that a model of cognitive diagnosis would be more useful

if it were built on learning theories. This belief is in line with studies in

development and education, for instance by Glaser and Bassok (1989). It is

argued that a theory of instruction must specify itself in terms of three

dimensions: (a) the knowledge state of competent performances ; (b) the initial

knowledge state of the learner; and (c) the process of learning, the transition

from initial state to desired state that can be accomplished in instructional

settings (Glaser and Bassok, 1989). The insight of Glaser and Bassok is that it

is necessary to consider the above three dimensions in order to determine the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

best remedial instruction out of possible instructions. What it implies in the

context of ITS is that the tutoring model must have information on these three

dimensions. In other words, the model of cognitive diagnosis must generate

such necessary information with a student model and a expert model. Thus,

various cognitive diagnosis methodologies are discussed in terms of these

three dimensions.

Section 5.1 reviews several studies concerning descriptions of in

knowledge states between an expert and a student. Three approaches are

described, and among them the bug part approach which reconstruct buggy

rules is favored as an appropriate approach for this study (5.1.1). Planning and

learning are two methodologies for reconstructing buggy rules, and the learning

approach is advocated (5.1.2). Section 5.2 reviews relevant learning theories.

Learning can be viewed as strategy learning in production system frameworks

(5.2.1). Two types of techniques frequently used in strategy learning studies are

generalization and discrimination (5.2.2). It is shown that discrimination

learning has potential to overcome some of disadvantages of generalization

learning (5.2.3). Empirical learning has been the dominant paradigm in

machine learning, but it is argued that empirical learning models are not

appropriate for the purpose of cognitive diagnosis (5.3). It is argued that

domain principles are important in procedure construction (5.4), and rational

learning models are favored for the cognitive diagnosis purpose (5.5). Finally

the summary of this chapter is provided in Section 5.6.

5.1 Differences between Expert and Student

Cognitive diagnosis can differ in terms of a knowledge representation

scheme employed to express knowledge states of a competent expert and a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

novice student. We may think of two different representation schemes, one for a

competent expert and the other for a novice student. However, most cognitive

diagnosis studies assume one representation primarily because of efficiency

and economy (VanLehn, 1988). Typically one representational language is

used to represent knowledge states ranging from the initial to the competence.

Novices are usually viewed lacking some knowledge and/or keeping incorrect

knowledge as compared to experts. Therefore, a student model can be more or

less a subset of a expert model and/or a expert model with incorrect knowledge.

Literature shows three types of approaches: the overlay approach, the bug

library approach, and the bug part approach (Wenger, 1987; VanLehn, 1988).

In the overlay approach, a cognitive diagnosis model is concerned with

only missing knowledge (Clancey, 1987). Conceptually, a student model is a

proper subset of a expert model. A student model consists of the expert model

plus a list of items that are missing. In the bug library approach, both incorrect

knowledge and missing knowledge are represented (Anderson et al., 1990;

Sleeman, 1984). A student model here consists of an expert model plus a

library of predefined misconceptions and missing conceptions. The members of

this library are called bugs. In the bug part library, ITSs construct bugs from a

library of bug parts. Bugs are constructed during diagnosis rather than being

predefined. For instance, each bug constructed by the ACM system (Langley

and Ohlsson, 1984) is a production rule which consists of conditions, that are

learned during diagnosis, and single action. The action and the predicates

used for inducing conditions are drawn from the defined representation

language.

Among three approaches, the overlay approach is the most frequently

used in representing student models. The overlay approach, however, is not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

able to model incorrect knowledge which was found to account for many of the

errors that have been shown in children's subtraction (Matz, 1982; Brown and

VanLehn, 1980; Young and O'Shea, 1981; Stevens et al., 1982). The bug

library approach could be better in accounting for errors because it can model

errors resulting from incorrect knowledge as well as those from missing

knowledge. The biggest hurdle in the bug library approach is in assembling the

library (VanLehn, 1988).. The library should be nearly complete. If a student has

a bug that is not in the library, then the student model will try to fit the behavior

with some combination of other bugs. It may totally misdiagnose the student's

misconceptions. It is the bug part approach which can account the largest set of

errors. This is so because bugs are constructed rather than predefined. Bugs

can be constructed through a planning technique (Kowalski and VanLehn,

1988; VanLehn and Garlick, 1987) or through a machine learning technique

(Ohlsson and Langley, 1988; Langley et al., 1990).

5.1.1 Generative Theories of Bugs

So far discussed are how much each approach is able to account for

errors. What is obviously missing in the discussion is why errors occur in the

first place, in other words explaining the cause of errors. It is useful to

distinguish a generative theory, bugs, and systematic errors (Figure 5.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55
Figure 5.2. Generative theory of bugs (Brown and VanLehn, 1980, p.
380)

Generatiue Theory of Bugs

,su
Bugs

Systematic Errors

Errors are said to be systematic if there exists a procedure that produces

his erroneous answers. Systematic errors occur from using erroneous

variations of a correct procedure for that skill. These erroneous variations of a

procedure are called bugs or mal-rules. Bugs are viewed as complex,

intentional actions reflecting mistaken beliefs about the skill, and are

differentiated from slips where the subject did something which they did not

intend to do. Bugs can be collected empirically from examining protocols and

added to a correct procedure to diagnose students' behavior (Brown and

Burton, 1978; Sleeman, 1984). Or bugs can be reconstructed via a

computational mechanism (Brown and VanLehn, 1980; Young and O'Shea,

1981). Brown and VanLehn posited that there would be a small set of

principles and associated processes that could transform a correct procedural

skill into all of its buggy variants. Thus, Brown and VanLehn hypothesized that

all observed errors could be explained by buggy variants which in turn could be

generated by applying one or more hypothesized processes to a correct

procedural skill. Hence those principles and processes are called a generative

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

theory of bugs. In this study, three generative mechanisms are reviewed: repair

(Brown and VanLehn, 1980), deletion (Young and O'Shea, 1981), and

misgeneralization (Matz, 1982; Sleeman, 1984).

Brown and VanLehn (1980) proposed a generative theory of bugs, called

repair theory, which generated all the known or expected bugs for a particular

skill, in this case subtraction. According to this approach, bugs originate mostly

in mislearning and forgetting: that is, in the student's failure to follow an

instructional sequence or in the teacher's failure to provide an unambiguous

and organized set of instructive examples. The essential idea of the repair

theory is that some fault in a student's core procedure for subtraction leads to

impasses, which are problem states from which the core procedure is unable to

proceed. When this happens a local problem solver is brought into play to

devise a repair to bridge to a new problem state from which the knowledge

base can take over. The observed bugs thus arise from the cross product of the

set of possible impasses with the set of possible repairs.

Another generative mechanism that explains the source of errors is

deletion (Young and O'Shea, 1981). Similar to Brown and VanLehn (1980),

Young and O'Shea (1981) argued that many errors in children's subtraction

resulted from the use of incorrect strategies rather than from the incorrect recall

of number facts. They used a production system to represent the procedure for

correct subtraction and argued that many different kinds of errors could be

accounted for mainly by the omission of various rules from the set of correct

productions.

Matz (1982) and Sleeman (1984) proposed misgeneralization as the

main source of errors. Matz (1982) argued that errors could be viewed as the

result of a systematic adaptation of previously acquired knowledge using a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

small number of extrapolation technique. Sleeman (1984) similarly argued that

many of the bugs encountered in the subtraction domain could be accounted for

by the process of misgeneralization. As contrary to repair theory which

hypothesizes that bugs occur because the student has not encountered the

appropriate teaching necessary to perform the task, misgeneralization assumes

that the student actively tries to infer procedure with his previous knowledge of

the domain and errors occur because the procedure cannot be correct due to

some missing knowledge. In this approach, students are viewed active theory

builders. This view complies with the constructive view developed in cognitive

development and education studies (see Section 4.3).

All these three approaches attempt to explain why errors occur from

different perspectives, but they all posit the existence of bugs that cause errors.

Studies under this presumption are therefore often called bug studies. The

whole enterprise of bug studies share two assumptions (Payne and Squibb,

1990). One is that errors can be classified as slips or mistakes (see Section 7.3

for more discussion about slips and mistakes). Slips occur when one fails to

execute as intended. Mistakes occur when one formulates the intention

incorrectly. Slips are often called execution errors, and mistakes are called

planning errors (Kowalski and VanLehn, 1988). Bug studies focus on mistakes.

The other is that bugs arise in the context of purely syntactic manipulations of

symbols without considering any semantic rationalization of these

manipulations. A basic insight of bug studies is that children often used

systematic routines that produce wrong answers and those systematic routines

involve in mainly syntactical manipulations. A challenge to this assumption is

the view that bugs can be seen as corresponding to violations of specific

principles (Resnick, 1982; Resnick, 1983; Resnick and Omanson, 1987;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

Langley et al., 1990; Ohlsson and Rees, 1991). In the latter perspective, bugs

are not caused by faulty syntactic manipulations but by faulty understanding of

domain principles. Thus, in this perspective, a generative theory of bugs is not

like repair, deletion, or misgeneralization but must contain a process of

semantic rationalization.

There are two computational mechanisms in ITS literature, that attempted

to model a process of semantic rationalization. Smith et al. (1989) built a

computational model called COUNTPLAN which generated procedures through

a planning process. Another computational model, called HS, was proposed by

Ohlsson and Rees (1991). HS used a learning process to generate

procedures. It appears that planning and learning are two main alternatives in

cognitive diagnosis research attempting to build a generative theory of bugs.

5.1.2 Reconstructing Buggy Rules: Learning or Planning

Generative mechanisms have been advocated because they explain in

principle ways why errors occur, and also because they are able to model

complex errorful behavior (Young and O'Shea, 1981; Sleeman, 1984). All

three generative mechanisms explain, from different perspectives, what causes

errors. Repair theory assumes a repair mechanism which patches a

constrained procedure at an impasse and explains errors with such patched

procedure. Similarly the deletion mechanism explains errors with a partial set

of rules, and misgeneralization is proposed as the source of errors, although

Sleeman (1984) just proposed the idea of misgeneralization for explaining

errors and did not work out any detailed mechanism. All these mechanisms

assumes a priori some kinds of computational mechanisms to explain

empirically observed errors. On the contrary, it is possible to reconstruct buggy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

rules from problem solving traces. There are two alternative approaches

attempting to reconstruct bugs from problem solving traces.

One approach uses a learning mechanism to induce a set of rules that

constitutes a student model. For example Sleeman's (1984) misgeneralization

assumes a type of generalization learning. Langley and Ohlsson (1984)

applied discrimination learning to the construction of ACM. ACM constructs

cognitive models from error data in the domain of subtraction problems.

Recently Ohlsson and Rees (1991) proposed a computational mechanism of

rational learning which can be easily extensible to the task of cognitive

diagnosis. Learning mechanisms are discussed in detail in Section 5.2.

The other approach that reconstructs buggy rules from problem solving

traces uses a planning technique. Intuitively, a plan is a program of action, or

sequence of steps, designed to achieve a desired goal. Problem solving of

students can be viewed as executing a set of actions that are intended to

contribute to the overall goal. Based on this view, it can be further said that a

trace of goals and subgoals that a student used in generating a sequence of

actions provides an appropriate structure for determining the correctness of a

solution. Plan recognition is the inverse of planning. A planner uses facts

about its problem area to produce a plan that achieves its goal. A plan

recognizer starts with a sequence of actions, reconstructs the problem solver's

plan, and thereby infers the underlying beliefs. The object of plan recognition is

to infer a plan tree with given leaves. The leaves of the tree are primitive

actions, the nonleaf nodes in the tree are subgoals, and the root node of the

tree is the overall goal. Links between nodes in the tree represent goal-subgoal

relationships. Such a tree is called a plan.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

Genesereth (1982) proposed an idea that plans can be viewed as

dependency graphs. Dependency graphs explain how a set of actions achieve

its goal in terms of the problem solver's beliefs about the problem domain. He

further talked about the usefulness of resulting plans in identifying student's

misconception and in offering remediation in context. VanLehn (1987) viewed

that plan recognition is computationally similar to parsing a string with a context-

free grammar. He looked to the parse tree as an explanation for the action

sequence. When the parser could not find any tree, his system, called SIERRA,

invented one or more new procedures to complete a parse. Thus he called

SIERRA'S algorithms as learning by completing explanations. VanLehn and

Garlick (1987) built CIRRUS which used parsing for plan recognition. Kowalski

and VanLehn (1988) used CIRRUS to induce student models from protocol

data. Recently VanLehn et al. (1989) showed that minor perturbations of goal

selection strategies could account for a great deal of variance in the strategies

of subtraction students. A production system model in VanLehn et al. (1989)

differentiated two types of productions: preferences, which contains information

about goal selection, and primitive actions, which contains operator selection

information. They showed that small perturbations on preference productions

could successfully reproduce protocols of eight nonstandard students.

Another model which utilizes the planning concept is COUNTPLAN

(Smith et al., 1989). COUNTPLAN is based on the work of Greeno et al. (1984)

who formally specified numerical competence as consisting of conceptual,

procedural and utilizational competence. Conceptual competence is the

implicit understanding of general principles of the domain. Procedural

competence is understanding of general principles of action and takes the form

of planning heuristics. Utilizational competence is understanding of relations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

between features of a task setting and requirements of performance. It is

assumed that the performance structures are consequences of competence

structures, derived by a planning system. The formalism used for planning is

planning nets (VanLehn and Brown, 1980). "Planning net" is a formalism for the

particular representation of teleologic semantics of a procedure. Teleologic

semantics refers to knowledge about the purposes of each of its parts and how

they fit together. A planning net provide a formal characterization of how

constraints and actions in the domain are integrated with the help of planning

heuristics into a valid plan. Greeno et al. (1984) used planning nets to derive

plans from schematic representations of domain-specific and general

procedural principles, three types of competence. Actually COUNTPLAN is a

generative theory of performance, not a theory of cognitive diagnosis. It is not

concerned with inferring a student model from problem solving traces, although

Smith et al. (1989) suggested that such diagnosis would be possible.

Both planning and learning approaches appear to be promising. This

study follows the learning approach because, in addition to cognitive diagnosis,

learning is the central problem in many other applications, for example in

automating protocol analysis (VanLehn and Garlick, 1987), psychological

modeling of skill acquisition (Singley and Anderson, 1989), and knowledge

acquisition problem for expert systems (Langley and Simon, 1981). In addition

it is argued that learning techniques have more cognitive fidelity than planning

techniques (Ohlsson and Rees, 1991). The learning approach also has been

advocated by many researchers (Anderson, 1983; Langley et al., 1990; Newell,

1990; Ohlsson and Rees, 1991).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

62
5.2 Learning Theories

Learning theories specify the function and form by which novice

knowledge structure is transformed to expert knowledge structure. It is said that

one important dimension for understanding cognitive diagnosis methods is

learning theories to be assumed (VanLehn, 1988). Furthermore, assuming a

certain learning theory often dictates certain types of knowledge representation

(Charniak and McDermott, 1985). Recent extraordinary growth in artificial

intelligence and its application has produced a remarkable expansion in

machine learning as well (Michalski et al., 1983,1986; Kodratoff and Michalski,

1990; Kodratoff, 1986; Mitchell etal., 1986; Forsyth and Rada, 1986).

Researchers have proposed various categories for classifying learning

theories. Learning theories are often categorized by learning strategies, e.g.,

learning by being told, learning by doing, failure-driven learning, learning by

discovery, and many others (Charniak and McDermott, 1985; Michalski et al.,

1986; Cohen and Feigenbaum, 1982). Bundy et al. (1985) classified learning

theories on the basis of algorithms. This study uses a broader classification

scheme similar to Draper's categorization (1987). The scheme differentiates

three categories: rote learning, empirical learning, and rational learning.

One can learn without much knowledge. This learning is called "rote

learning" (Draper, 1987; Cohen and Feigenbaum, 1982). In rote learning, the

learning system does not need to do any processing to interpret the information

supplied by the environment. All it must do is memorize the incoming

information for later use. For example, memorizing a fact that "Chicago is 100

miles east from Lincoln" is a typical rote learning and results in adding a factual

assertion into memory. Although rote learning may pose some psychological

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

63

interesting issues, it may not be called learning after all. Rote learning will not

be discussed much further.

Empirical learning refers to the induction of rules with the help of domain-

independent, syntactic computations. Empirical learning is often called

inductive learning because it involves in the induction of rules. The classic

name for empirical learning is concept learning (Winston, 1984). Under the

name of concept learning, there is a wide class of research efforts (Mitchell,

1977; Anderson, 1976,1983; Laird et al., 1986; Anzai and Simon, 1979;

Langley, 1983a; VanLehn, 1982). Section 4.1.1 reviews some of concept

learning models relevant to the study, and discusses concepts underlying the

methodologies.

Mechanisms that infer new rules with the help of knowledge of the

relevant domain is called knowledge-based or "rational" learning mechanisms,

and are distinguished from empirical learning mechanisms (Ohlsson, 1986).

Although there can be many variations, two prominent theories In rational

learning are explanation-based learning (Minton, 1988) and the state constraint

theory (Ohlsson and Rees, 1991). These learning mechanisms are discussed in

Section 4.1.2.

Since a learning system can only exist in the context of some

performance framework (Newell and Simon, 1973; Langley, 1983b), it is

important what framework a learning system resides in. This study uses

production systems framework as the performance framework like many others

(Newell and Simon, 1972; Anderson, 1983; Newell, 1990; Langley, 1983b;

VanLehn, 1990; Ohlsson and Rees, 1991; Minton, 1988), and therefore learning

systems are described within the production systems framework. Learning in

the production systems framework can be viewed as the creation of new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

condition-action rules or productions. The appropriate actions of these new

rules can often be determined rather easily, since analogous actions can be

observed in the environment. However, the conditions under which these

actions should be applied is seldom so obvious (Langley, 1987). Thus, much of

studies in machine learning has focused on discovering heuristically useful

conditions on productions for solving problems (Langley et al., 1980; Langley,

1983). The problem of condition finding can be approached from a number of

perspectives. The categorization of learning theories employed in this study

differentiates between the empirical learning approach and the rational learning

approach. Since it is necessary to have a performance system within which a

learning system operates, the next section describes learning in the context of

heuristic search and production system architectures.

5.2.1 Strategy Learning Systems

From the perspective of search, learning can be viewed as the process

by which general but weak methods are transformed into powerful, domain-

specific search heuristics. The set of works which focus on this kind of

transitions is called "strategy learning" or "learning search control knowledge"

(Langley et al., 1980; Necheset al., 1987; Minton, 1988).

It is argued that three components are necessary for a strategy learning

system to improve its search strategies with experience (Langley, 1985). First,

such a system must be able to search, so that it can generate behaviors upon

which to base its learning. Second, the system must be able to distinguish

desirable from undesirable behaviors, and to determine the components of the

system that were responsible for those behaviors. Finally, the system must able

to use this knowledge to modify its search strategies, so that behavior improves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

over time. Since search is a performance framework, the other two issues are

more relevant to learning studies. The part of program which identifies faulty

knowledge or rules is called critics, and the part of program which, given the

information about desirable and undesirable behaviors, revises faulty

knowledge or rules is called modifiers (Langley, 1985; Bundy et al., 1985). The

former problem of identifying faulty rules is generally known as credit

assignment problem (Langley, 1985; VanLehn, 1989). The latter problem of

revising rules is called revision problem (Ohlsson and Rees, 1991)

Since so much of Al research has revolved around the notion of search,

search is the best understood. Many alternative search strategies have been

explored, ranging from very general but weak methods, like depth-first and

breadth-first search, to much more powerful methods that incorporate

knowledge about specific domains. Weak methods are general because they

make minimal assumptions about the problem. They provide a way to decide

what to do when one does not know what to do. Learning is viewed as the

transition from weak, general methods to specific, powerful methods. With

experience, one can gain knowledge which may aid him or her to decide

precisely what to do without involving in costly search. It is this aspect that

strategy learning systems try to model. A strategy learning system starts with

some weak search scheme that can be applied to many different domains and

improves its search scheme with experience.

Distinguishing desirable from undesirable behaviors and determining the

parts of the system responsible for those behaviors has been called the credit

assignment problem. One option for the credit assignment problem is to solve a

given problem with legal operators given by searching the problem space.

Once the solution paths have been discovered, they can be used to assign

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

credit and blame. Moves leading to states on the solution path are desirable,

since they led to a solution while moves going off the path are undesirable,

since they led elsewhere. This approach is called learning from solution paths

(Langley, 1985; Sleeman et al., 1982). This approach is very general and can

be used to assign blame and credit to any problem, but when search spaces

are so large that other route must be taken, other credit assignment heuristics

that do not require complete solution paths must be employed to enable

learning to occur while the problem is being solved. These heuristics enable

the search process to be directed enough to reach the goal state. These

heuristics open the way to learning while doing (Anzai and Simon, 1979).

Langley (1985) documents this type of heuristics, which include noting loop

moves, noting longer paths, and illegal states.

A strategy learning system can alter its search behavior by either

discovering numerical evaluation function or by modifying heuristics with

symbolic conditions to direct search. A learning system which discovers

evaluation functions uses various techniques to generate an evaluation function

from a solution that has been found. While such techniques are useful in

domains where numeric evaluation functions are appropriate, other methods

must be used to acquire heuristics that can only be stated in symbolic terms.

One technique for learning symbolic conditions begins with very specific rules

and generalizes as more information is gathered (Winston, 1984). An

alternative approach starts with an overly general rule and generates more

specific versions through a process of discrimination (Langley, 1982). Yet

another approach incorporates aspects of both the generalization and

discrimination methods (Mitchell, 1977).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67
5.2.2 Generalization and Discrimination Learning

Two types of techniques have been dominating research on condition

finding: generalization and discrimination. In generalization learning, the

learning system initializes the first positive instance as the initial rule. Here the

rule represents a hypothesis of the concept to be learned. When a new positive

instance is encountered, the learning system compares the current hypothesis

with the new positive instance and finds the common features shared by the two

structures. Then the hypothesis is redefined in terms of this common structure.

In the case of the complex representation being used for the description of

examples, it is possible to have more than one set of common structure and

thereby have more than one generalization. Possible generalizations

constitutes a rule space. Given the rule space, the learning system must carry

out some type of search through the space of possible rules; a depth-first search

(Winston, 1984) or a breadth-first search (Hayes-Roth and McDermott, 1976).

The search can be aided with heuristics which suggest the most probable

generalization out of possible generalizations (Winston, 1970). The learning

system also can search the instance space to select those most likely to provide

new information. Therefore, a learning system can be viewed as performing

search through dual spaces: an instance space and a rule space (Simon and

Lea, 1990).

When a depth-first search is used to search through the rule space

(Winston, 1984), the learning system needs to have the ability to backtrack

through this space because there is no guarantee that the learning system

always select the right generalization. The learning system also needs to retain

positive instances of a concept as well as negative instances in order to be able,

to backtrack. In the case of a breadth-first search being used (Hayes-Roth and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68

McDermott, 1976), the learning system needs never backtrack and does not

need to retain positive instances. However, negative instances must still be

retained for the case when they are to be used in rejecting overly general rules.

Mitchell (1977) proposed a version space technique which has done

away with the need for negative information as well. A version space is simply

a way of representing the space of all concept descriptions consistent with the

training instances seen so far. Since a version space keeps track of all versions

that are permitted by the data so far, the learning system does not need to

backtrack and also does not need to retain negative instances. His version

space technique maintains a set of maximally general versions (MGVs) and a

set of maximally specific versions (MSVs). The set of MGVs contains maximally

general patterns for legal rules (or operators). The set of MSVs contains

maximally specific patterns for the rules. For a legal rule R, a maximally

general version may say that R applies at all times whereas a maximally

specific version may say that R applies only at a very particular situation. The

truth lies in between. A particular algorithm, known as the candidate elimination

algorithm, is used to manipulate the version space which is no more than a data

structure. The algorithm begins by initializing the MGVs to the most general

concept descriptions and the MSVs to the most specific concept descriptions

available in the pattern-description language. As new positive instances are

encountered, the specific boundary is made more general. As new negative

instances of a rule are encountered, the general boundary is made more

specific. Moving the specific boundary in the direction of greater generality can

be considered as a breadth-first search from specific patterns to more general

ones. The objective of this search is to compute a new boundary set which is

sufficiently general so that it does not rule out a newly encountered positive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

instance. Correspondingly, moving the general boundary in the direction of

greater specificity can be considered as a breadth-first search from general

patterns to more specific ones. The objective of this search is to compute a new

boundary set which is just specific enough to rule out a newly encountered

negative instance. Eventually the. boundaries meet, and the process converges

on one or more patterns that lie in the middle. Whether this pattern is actually

correct depends on how well pattern-description language fits the domain.

The basic approach of generalization has a number of drawbacks that

limit its value (Langley, 1987; Charniak and McDermott, 1985). First, because

they examine features that are held in common between examples,

generalization-based strategies do not lend themselves to the discovery of

disjunctive concepts. When confronted with positive examples of disjunctive

rules, these systems overgeneralize and cannot recover. Mitchell's (1977)

version space approach is also subject to this drawback because it also finds

features held in common by all positive instances. Second, generalization-

based learning systems have difficulty handling noisy data. This also results

from their dependence on finding commonalities in examples. If even one of

these examples is faulty, then the entire learning sequence is thrown into

confusion. Finally any program that learns through generalization would have

serious difficulty responding to an environment in which the conditions

predicting an event actually changed over time. If a tutor decides to modify the

definition of a concept in the middle of a training session, a system that

searched for common features would rapidly become very confused. It is

argued that the ability to recover gradually from changes in its environment

would be a definite advantage in real-world-settings. Langley (1983a, 1985,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

1987) proposed discrimination learning as an alternative which has the

potential to overcome these difficulties.

5.2.3 A General Theory of Discrimination Learning

Langley (1983a, 1985, 1987) proposed discrimination learning as a

general learning mechanism. Discrimination learning is a type of empirical

learning in that a learner attempts to learn from its past problem solving

experience. Discrimination learning is a type of strategy learning in that

learning occurs in the process by which general but weak methods are

transformed into powerful, domain-specific search heuristics.

Discrimination learning starts with very general rules containing few

conditions, and add more conditions as the need arises. Rather than looking for

features held in common by all positive instances, these methods search for

differences between positive and negative instances. These differences are

then used to further specify the conditions under which a concept or rule should

apply. The goal of discrimination learning is to compute more conservative

versions of the production with additional conditions that will prevent their

applications in the undesired case. Langley (1987) demonstrated the

generality of discrimination learning by applying it to strategy learning tasks as

well as concept learning tasks.

In concept learning tasks, Langley's program, called SAGE (Langley,

1983a), starts with an overly general rule which would predict that all examples

are positive instances of a concept. Once an example is available, the program

makes a prediction, and compares the prediction with the correct answer

provided by a tutor. When the program correctly predicts a positive instance, it

stores the instance for being used in the case of recovering from errors of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

commission. An error of commission occur when the program predicts an

example as a positive instance while it is a negative instance. There is another

type of errors, called errors of omission. Suppose the program predicts it as a

negative instance of a concept while the example is actually a positive instance

of a concept, an error of omission has occurred. When an error of omission

occur, the program designates a new very general rule that predicts any

situation to be a positive instance.

When an error of commission has occurred, the program evokes the

discrimination process in an effort to generate more conservative versions of the

responsible rule with additional conditions that will prevent their application in

the undesired case. The discrimination process retrieves the most recent

positive instance of the rule that make a wrong prediction and compares it with

the current negative instance with the goal of finding differences between the

two. The former instance is called a selection context, and the latter is called a

rejection context (Bundy et al., 1985; Langley, 1987). For each difference, the

program creates a new rule which is identical with the old rule but with a

difference as an additional condition. When an differential element is in a

selection context and not in a rejection context, the element is just added to a

new rule as a extra condition. On the other hand, when an differential element

is in a rejection context and not in a selection context, the element is negated

and then added to a new rule. The added condition ensures that the new rule

would still be true when the original rule correctly applied, but would not be true

in the undesired situation. Langley (1983a) further showed that the

discrimination mechanism also gives the program the capability of learning

disjunctive concepts, which causes a trouble in generalization methods. It is

argued that learning disjunctive concepts is possible in the discrimination

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

technique because the program focuses on a single positive and a single

negative instance at a time. Langley also argued that the strengthening

process, when it works together with the discrimination process, is particularly

effective in handling noise, be it positive or negative. The strengthening

process weakens of' strengthens the measure of success attached to each rule

whenever it make a correct prediction or incorrect prediction respectively.

An example may clarify the discussion. Suppose a concept to be

learned is "large or blue" and the program initial is provided an overly general

rule that has no condition. Presented a positive instance "large and blue", the

program predict it correctly as a positive instance and stores the instance in the

memory. Encountering a negative instance "small and blue", the program

which has only an initial rule predict it incorrectly as a positive instance and an

error of commission has occurred. Given the error of commission, the program

evokes the discrimination mechanism which retrieve the most recent positive

instance, that is "large and blue" and compares it with the current negative

instance "small and blue" to find one difference, "large" which is in the selection

context but not in the rejection context. The program then creates a rule with the

condition (large). Given yet another negative instance "small and red", the

program, which has now an initial rule and a rule with a condition (large),

predicts the instance as a positive instance, because even by this time the initial

rule may have the largest strengthening value. The discrimination process is

evoked again and create a rule with a condition {red). Through these

processes, a disjunctive concept can be learned and each disjunct is

represented as a separate rule.

The discrimination mechanism applied to strategy learning tasks is In

principle same as the one described in concept learning tasks, except a few

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

complications (Langley, 1985). First the program solves a given problem with

legal rules by the depth-first or breadth-first search to find solution paths and

alternative paths. Using several heuristics (Langley, 1985, p. 234-235), the

program identifies desirable moves from undesirable moves . Comparing the

good move to the bad move, the discrimination mechanism generates variants

of rules. Since in strategy learning there can be a number of legal rules or

operators with several variables, a selection and a rejection contexts keeps

variable bindings as well as all elements in working memory at the time when

variable bindings occur. Differences between two sets are generated by a path-

finding process which starts from analogous symbols in the two sets of bindings

and attempts to find some path through the good elements that has no

analogous path through the bad elements. The path finding process also

searches for paths through the bad elements that have no analogous path

through the good elements. Based on the difference that is found, the program

constructs the variant of the old rule. Like in concept learning, the

discrimination process is showed to learn a disjunctive concept. When a

problem's search space is so large that the program cannot continue its

processes until solution paths are derived, the program may use a number of

heuristics (Langley, 1985, p. 223-226), which allows the program to learn while

doing.

5.3 Empirical Learning

Empirical learning has been the dominant paradigm in machine learning

and therefore there are many models developed. Such models include the

ACT* model (Anderson, 1976, 1983), the SOAR model (Laird, Rosenbloom, and

Newell, 1986), and many others (Anzai and Simon, 1979; Holland et al., 1986;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Langley, 1983b; Neches,1987; VanLehn, 1987;1990). All these systems

focused on procedure learning within the production systems framework (see

Chapter 5 for production systems). Procedure learning addresses the question

of how knowledge encoded declaratively in the memory can be transformed to

procedures, that is rules, which are more efficient. In this perspective, learning

is viewed as the piecewise acquisition of condition-action pairs.

Although empirical learning models are based on different hypotheses

about learning mechanisms, they share two basic assumptions (Ohlsson and

Rees, 1991). One is that when faced with a novel task and with insufficient

knowledge to generate a solution, a learning system applies weak methods

such as heuristic search to generate a task-relevant behavior. The other is that

a learning system examines solution paths or traces of the problem-solving

steps and creates new procedures by various ways such as generalization,

discrimination, and composition (Anderson, 1983; Langley, 1984; VanLehn,

1989). The basic insight underlying most empirical learning models is that we

can generate heuristically useful conditions for legal rules through syntactic

manipulations on data, solution paths, without considering domain principles.

Those conditions gained would reduce the problem space at the next

application. Therefore, it can be said that learning indeed occurs because

search efforts are substituted with knowledge.

Models of empirical learning are indeed quite successful in explaining

human learning in many cases (Anderson, 1983; VanLehn, 1982; Langley,

1983a). Nonetheless, from the perspective of cognitive diagnosis empirical

learning models are subject to a significant criticism that procedures are

typically constructed in order to produce particular sequences of steps, with little

attention to the meaning of those steps. This is because a procedure is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

acquired in isolation from its conceptual basis. If it is the case that the goal of

education is to enable students to derive or construct procedures from the

concepts and principles of a domain of interest, it may be desirable to relate

procedure construction with concepts and principles. The next section provides

arguments supporting this view.

5.4 Importance of Domain Principles in Procedure Construction

This study is based on the belief that procedures construction is based

on domain principles rather than syntactic manipulation on data. This belief

certainly assumes that if students understood concepts and principles of a

domain, then errors would disappear, procedures would be better retained, and

would transfer more easily to novel problem contexts (Ohlsson and Rees,

1991). Some evidences about conceptually based procedure construction in

counting are reviewed in earlier chapters of this study (Gelman and Meek, 1983,

1986; Resnick, 1982, 1983, 1984). It is also argued that procedures learned

with understanding increase the likelihood that an appropriate procedure will

be recalled and used effectively (Hiebert and Lefevre, 1986). The last

assumption of the transfer of cognitive skills appears to be intuitively clear,

nonetheless determining the breadth and depth of transfer of cognitive skills is

not a simple matter. In fact, the study of transfer has a long history but yet there

seems to be no convergence at all.

A fundamental question in the study of transfer is whether transfer is

limited in scope or whether it is broad and ranges across diverse disciplines

(Singley and Anderson, 1989). The broad view, first advocated as the doctrine

of formal discipline, was challenged by associationists like Thorndike, who

claimed that transfer was quite specific and was based on the existence of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

identical elements, known as the theory of identical elements. The Thorndike's

theory of identical elements, however, was challenged by the gestalters like

Werthemer, who showed that a broad range of transfer outcomes was possible

and that the generality and applicability of knowledge was largely dependent

on its representation-functional relations among elements-rather than identical

elements. To gestalt psychologists, transfer occurred not through the piecemeal

sharing of common elements but rather through the transposition of an entire

structure. Based on the degree of transfer, gestalters then differentiated

senseless learning or rote learning from meaningful learning. Senseless

learning is the kind which would show little or no transfer whereas meaningful

learning would show quite a b it.

With the advent of the information processing psychology, many

traditional learning and transfer issues were temporarily set aside (Newell and

Simon, 1972). One topic that has received considerable recent attention,

however, is analogical transfer in problem solving (Anderson and Thompson,

1989; Gentner, 1989; Holyoak and Thagard, 1989). Analogical problem solving

starts with reminding of a similar problem (source) whose solution is known.

Then the solution of that problem is mapped to the current problem (target). To

test this kind of transfer, many studies use isomorph-problems that differ in

terms of superficial features but have the same problem-solving operators and

search space. Hayes and Simon (1977) found that subjects in most cases

failed to notice similarities between problems and drawing on analogous

solutions. Gick and Holyoak (1980, 1983) reported similar findings in their

subsequent studies. Subjects often had difficulties in drawing correspondences

between the two domains and consequently in solving the target problem even

when the were informed of the relevance of the source (Hayes and Simon,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1977; Kotovsky et al., 1985). The difficulty in many cases seems to be that

subjects adopt representations of the two problems that rely too heavily on

superficial features, which are radically different, but not heavily enough on

deep, functional relationships, which are same. Expert-novice studies provides

some evidences supporting this argument.

Expert-novice studies generally suggest that novices typical use shallow

representations which mostly rely on superficial features whereas experts

exploit deep representations which capture functional relationships (Chi et al.,

1981; Chi et al., 1982). Chi et al. (1981) asked novices and experts to sort

physics textbook problems on any basis they wished. Novices did so on the

basis of kinds of apparatus involved (lever, inclined plane, balance beam, and

the like), or the visual features of the diagram accompanying the problem.

Experts, on the other hand, classified the same problems on the basis of the

underlying physics principle that was needed to solve the problem (e.g., energy

laws, Newton's second law). Clearly, novices depended on superficial features

of problems for categorization, while experts sorted on the basis of abstract,

solution-relevant features. Novices, hence, would have more trouble

transferring solution-relevant features of the source to the target problem

solving than experts. Indeed, Smith (1986) showed that substantial transfer

was possible between isomorphs, given sufficient practice on source problems.

What can be understood from the above discussion is that transfer is the

key determinant of meaningful learning. And also that meaningful learning is

possible only when subjects have deep representations. Deep representations

contain domain principles. The usefulness of deep representations lies in utility

of aiding the interpretation of the problems. Deep representations are,

therefore, the characteristics of experts' representations. Thus it can be argued

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

that any learning model which aims for diagnosis and tutoring must construct

procedures similar to the form and content of a deep representation. Empirical

learning is based on purely syntactic notion (Michalski, 1983). Empirical

learning systems, because of their basic assumption of syntactic manipulation

on data, are less likely to produce such representations than rational learning

systems in which learning occurs with the help of domain principles. There is

no guarantee that such a learning will be useful or even semantically well-

formed when interpreted in the real world (Dejong, 1988).

5.5 Rational Learning

Unlike empirical learning models which are profound in machine

learning literature, there are quite few rational learning models. Two prominent

models are explanation-based learning and the state constraint. Explain-based

learning uses domain principles to justify generalizations. All empirical

learning models must make an unjustified inductive leap when it is assumed

that a regularity that has been true in the past will be true in the future. Explain-

based learning avoids this drawback by using domain principle to explain why

the regularity will hold. Although explain-based learning is a good alternative

for this study, it is decided to choose the state constraint theory for this study.

Ohlsson and Rees (1991) points out some technical differences between

explanation-based learning and the state constraint theory. Explain-based

learning systems employ their principled knowledge in the construction of an

explanation. As a result, explanation-based learning systems require domain

theories complete enough so that the required explanation can be constructed.

In the state constraint theory, on the other hand, principled knowledge is used to

evaluate search states. It is argued that Ohlsson and Rees's system can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

operate with partial or incomplete domain theories. This point is viewed

important, given the fact that human can perform with even incomplete

knowledge although they make errors.

The state constraint theory of Ohlsson and Rees (1991) is the extension

of Langley's (1983a) discrimination learning. The system proposed by Ohlsson

and Rees, called Heuristic Searcher (HS), starts with very general rules and

add more conditions as learning occurs. In HS, learning is viewed as the

cognitive function of conceptual understanding. The state constraint theory

views that performance with understanding occurs when the problem solver

monitors his performance on the problem by comparing the successive states of

the problem with what he knows about the task environment, i.e., principles

about the environment. Learning occurs when an incorrect or incomplete

procedure generates a problem state that is inconsistent with the principles. In

the state constraint theory, therefore, a set of principles constitutes conceptual

understanding, which are compared with the successive states of the problem,

and principle violations trigger learning. Ohlsson and Rees developed

hypotheses in detail in terms of understanding, performance, and learning (see

Figure 5.3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80
Figure 5.3. Hypotheses of the state constraint theory

Hypotheses about understanding
1. Understanding consists of knowledge about the task environment.
2. Knowledge is declarative rather than procedural.
3. Understanding consists of principled rather than factual knowledge.
4. Principles constrain the possible states of affairs.

Hypotheses about performance
1. Thinking is heuristic search.
2. Principles constrain search through state evaluation.

Hypotheses about learning
1. Constraint violations trigger procedure revision.
2. Constraint violations inform procedure revisions.

Hypotheses about understanding basically specify that understanding

consists of principled knowledge. Principled knowledge is represented

declaratively and is used to constrain the possible states of affairs. These

hypotheses about understanding in general concur with findings in the studies

of cognitive development. Hypotheses of performance are extensions of the

major hypothesis uphold in cognitive science, namely, that problem solving

consists of heuristic search, carried out by a production system architecture.

Hypotheses about learning answer two basic questions of learning: critic and

modifier (Bundy et al. 1985). In these hypotheses, constraint violations identify

when a revision is needed and also inform information of how the faulty

procedure should be revised. Ohlsson and Rees (1991) proposed two

algorithms which could be used for the revision of faulty rules.

HS is based on these hypotheses. Ohlsson and Rees (1991) apply HS

to the domain of counting and of arithmetic, and find that HS is able to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

81

successfully construct procedures from conceptual knowledge represented as

state constraints.

Heuristic Searcher (HS) consists of procedural knowledge, conceptual or

principled knowledge, and a learning mechanism. A procedure consists of a

collection of rules. Principles are represented in HS as state constraints. A

state constraint C is an ordered pair <Cr Cs> of patterns in which each pattern is

similar to the condition of a production rule. The left-hand pattern Cr, is called

the relevance pattern, because it determines the class of search states to which

the constraint is relevant. The right-hand pattern Cs is called the satisfaction

pattern, because it encodes the criterion a state must match i order to satisfy the

constraint (given that the relevance pattern matches). The relevance and

satisfaction patterns are matched against the search states with the same

pattern matcher that matches the production rule conditions, so new

computational machinery has to be postulated. A cycle of HS consists of

selection of a state, matching productions, and matching constraints. A cycle

begins by HS selecting an unexpanded search state as the current state. The

system then matches all production rules in the current procedure against the

selected state. The system then matches its constraints against each new state

and records which constraints, if any, are violated by that state.

HS has two modes of operation: performance and learning. In

performance mode, HS perform best-first search with the number of constraint

violations as the cost function. The idea of using the number of constraint

violations as the evaluation function is similar to the one proposed by Langley

et al. (1990). The evaluation function implies that HS prefers solution paths that

are more congruent with its principled knowledge over those that are less

congruent. In learning mode, HS preforms a breadth-first search, because it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82

needs to stop as soon as a constraint violation occurs. Given a constraint

violation, HS applies its learning mechanism to the faulty rule which generated

the constraint violation and to revise it.

The state constraint theory of Ohlsson and Rees (1991) merits attention

in several aspects. It uses a separate, novel representation for principled

knowledge, called state constraint, and consequently opens a path to

meaningful learning. A state constraint is a two-part pattern that a search state

has to satisfy in order to be valid. A state constraint is not a production rule or

an inference rule. It is not a Horn clause. A state constraint does not guarantee

that its right-hand side is true when its left-hand side is true; it claims that the

right-hand side ought to be true. HS's learning can be viewed as trading

evaluation selectivity with generative selectivity. Search efforts are traded with

powerful knowledge. Thus, HS is a strategy learning system but utilizes a

rational learning mechanism. The rational learning mechanism embedded in

HS constructs a target procedure by constraining an initial procedure until it is

consistent with the relevant principles.

5.6 Summary

This chapter reviews diverse perspectives and methodologies of

cognitive diagnosis. In this study, cognitive diagnosis is viewed as consisting of

inferrring a student model and producing error descriptions based on a inferred

student model. Error descriptions can be used in an instruction module to

decide the best remediation instruction.

Three approaches of describing errors are reviewed, and the

reconstruction approach is taken for this study. Even in the reconstruction

approach, there are two approaches. One approach reconstructs buggy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

83

procedures on the basis of syntactic manipulations of symbols, while the other

reconstructs faulty procedures on the basis of semantic rationalization. Since

the constructivism assumption itself dictates semantic rationalization, this study

attempts to model the process of semantic rationalization.

This study finds alternative methodologies for reconstruction: planning

and learning. Learning is favored, and especially a rational learning

mechanism called the state constraint theory (Ohlsson and Rees, 1991), is

chosen as a formalism for this study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

Chapter 6 A MODEL OF COGNITIVE DIAGNOSIS

In this chapter, a model of cognitive diagnosis, called PSCD (Production

System for Cognitive Diagnosis), is proposed. PSCD is based on three

constraints, and uses state constraints for expressing conceptual knowledge

(Ohlsson and Rees, 1991) and productions for expressing procedural

knowledge. The main hypothesis of PSCD is that conceptual understanding

underlies procedural performance. In other words, PSCD hypothesizes that

student errors arise from using buggy procedures that are constructed with

incomplete understanding of domain principles.

PSCD is written in Common LISP. It has two modes of operation:

performance and diagnosis. In the performance mode, PSCD solves a problem

with given knowledge by searching the search space of the problem. In the

diagnosis mode, PSCD diagnoses a student's inadequate understanding of a

domain with the student's problem solving traces. Writing a program of a

production system would have been a horrible experience without such

valuable references as Anderson et al. (1987), Winston and Horn (1987), and

Charniak and McDermott (1985). Most ideas employed in PSCD come from

these references. Especially, the pattern matcher of PSCD is a modified one of

Anderson et al. (1987, Chapter 15).

Section 6.1 presents central features of PSCD. Sections 6.2 and 6.3

explain representation languages of PSCD. Section 6.3 explains how PSCD

detects errors and . In Section 6.4, PSCD is applied to a standard counting

task, the same task as Ohlsson and Rees' (1991) HS is applied. In Section

6.5, PSCD is applied to a more complex task of transportation problem solving

whose modeling is our main objective of the study. Section 6.6 summarizes this

chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

6.1 The Central Architecture for Performance and Cognitive

Diagnosis

There are five main characteristics associated with PSCD (Figure 6.1).

These characteristics are similar to those of Newell's (1990) SOAR and Ohlsson

and Rees' (1991) HS. The first of these states that search through problem

spaces is the framework within which knowledge plays its role and in which task

assessment is assessed. Two types of knowledge operate in the problem

space. Conceptual knowledge guides the search and procedural knowledge

implements the operators. Conceptual knowledge is represented as state

constraints and procedural knowledge is represented as a set of productions.

PSCD initially evokes the problem-space search with a set of productions. The

problem-space search can consider one state at a time. At each state of the

problem search, the knowledge search finds the relevant constraints and

guides the problem-space search. At the performance mode, PSCD uses the

number of constraints violation as the evaluation function to assess its progress

in the problem-space search as in HS (Ohlsson and Rees, 1991). At the

diagnosis mode, there is no need of problem-space search and of task

assessment because at this diagnosis mode PSCD reads the trace of problem

solving and only reports the constraints violated in the trace given to it.

Figure 6.1. The main characteristics of PSCD

1. Problem spaces represent all tasks
2. Productions provide procedural knowledge.
3. State constraints provide conceptual knowledge.
4. Attribute/object/value representation for all facts.
5. Goals direct all behavior.
6. The strengthening process adjusts the state of conceptual understanding.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

86

In PSCD, all entities are represented as object-attribute-value (OAV)

triples. OAV representation is used in SOAR, HS, and many others. Conditions,

actions, and working memory elements all are OAV triples. Objects are defined

by the set of attributes and values associated with them. Two objects are the

same if they have the same attributes and values. OAV representation is

argued to be easy to manipulate and to admit combinatorial variety. PSCD is a

hierarchical production system like ACT* (Anderson, 1983). It does not keep a

goal stack, rather goals are chained through productions.

One seemingly essential characteristic that does not appear in the list is

about the learning mechanism. It has been argued that ITS must have a

runnable learning mechanism as its part in order to build a student model. A

student model built thereby can be used as a basis for assessing a student's

weaknesses. In the proposed architecture, however, it is not necessary to

assume a specific revision mechanism which creates new rules in response to

credit assignment information (Ohlsson and Rees,1991; Langley, 1985). It is

viewed that student errors arise from using buggy procedures. From the

perspective of constructivism, buggy rules are constructed due to missing

constraints, i.e., incomplete understanding of domain principles. Thus it is

possible to represent a student model as a proper subset of a complete set of

constraints, and to diagnose student errors as lacking one or more missing

constraints.

PSCD, however, hypothesizes a revision mechanism, called

strengthening process. The strengthening process is used in many learning

systems (e.g., Langley and Ohlsson, 1982; Anderson, 1983) and is advocated

as a superior means for modeling errors (Reason, 1990). ACM (Langley and

Ohlsson, 1982) and ACT* (Anderson, 1983) associated strength values with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

productions and revise values as learning occurred. In contrast, PSCD

associates strength values with constraints.

A correct set of constraints can be viewed as all having strength values

higher than a certain threshold value and hence all constraints are applicable

for state evaluation. A perturbed set of constraints, on the other hand, refers to a

set of constraints some of which have strength values higher than a threshold

value and the others do not. Those constraints with strength values lower than

a threshold value are not applicable for state evaluation and therefore allow

incorrect states to be considered, consequently generating errors. This study

does not focus on such issues as what value a threshold be and how the

strength process works. Rather it is posited that one can build such a

mechanism and determine an appropriate threshold value later, when a fully

implemented ITS is available and makes it possible to collect a large amount of

data, i.e., students' problem-solving traces. In this study, it is simply assumed

that a constraint is either applicable or not applicable. The question becomes

whether PSCD is able to correctly identify errors from the problem-solving

trace, and to suggest violated principles associated with those errors.

6.2 Representation of PSCD

Determining an appropriate representation is not an easy task at all.

VanLehn (1983, p. 249) observed that "Getting the knowledge representation

language "right" allows the model to be made simple and to obey strong

principles" (italics in original). VanLehn (1983) admitted that Repair theory's

representation language had undergone five major changes and each change

had profound effects on the simplicity and principledness of the model. This

study also have undergone the similar experience. Several representational

languages which looked promising are tried. These included, although not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8 8

limited to these, display-based representation (Larkin et al., 1980; Larkin, 1981;

Larkin, 1982; Larkin, 1983; Larkin et al., 1984; Larkin and Simon, 1987; Larkin,

1989), OPS5 (Brownston et al., 1985), and ACT* (Anderson, 1976, 1983). It

appears that each approach has unique advantages and hidden costs as well,

and thereby limits the set of possible languages that can be used to represent

the domain under study. The following subsections discuss representation for

facts, for principled knowledge, and for procedural knowledge.

6.2.1 Representation for Facts

PSCD uses attribute-object-value (AOV) triples to represent facts. The

first element of this structure is an attribute of an object in the problem domain.

For example, one may wish to describe the status of a line in a transportation

tableau whether it is deleted or not. The name of the line and the value of the

attribute follows. Thus one may represent a line called r1 which has been

deleted as (status r1 deleted). Although it looks as simple as this, there are

several important aspects to be considered.

Charniak and McDermott (1985, pp. 11-14) proposed three principles of

representation (Figure 6.2). The first principle is concerned with the situation in

which a referent in a representational language is not clear. For example, when

we talk about "Jack", there can be more than one interpretation of "Jack"

because there can be several persons whose names are all "Jack." This

problem is called referential ambiguity. The solution is to make up names for

each individual so that one name uniquely corresponds to one individual. Such

unique names are instances or tokens of the class "Jack." The second principle

is concerned with ambiguity in predicates. The problem of ambiguity in

predicates is called word-sense ambiguity. For example, representation for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

sentence like "Jack caught a ball" may come out like Qack-2 caught ball-17).

The problem of this representation is that the meaning of "caught" is not clear

because the word "caught" in English has more that one meaning. As before

the solution is to make up names for each word senses so that one name

uniquely correspond to one word sense. Thus it would look like (jack-2 caught-

object ball-17). The last principle requires one to clearly indicate functional

structure. In the previous example, the functional structure of the sentence

distinguishes the "catcher" flack-2) from the "caught" (ball-17). The solution is to

use the order of symbols there in exactly the same way that English does. Thus

(jack-2 caught-object ball-17) is not the same as (ball-17 caught-object jack-2).

According to Charniak and McDermott, for historical reasons representations

are typically written with the predicate first. Thus we would write the previous

example as (catch-object jack-2 ball-12).

Figure 6.2. Principles of representation

1. Representation must make the choice of referent explicit
2. All predicates in an representation must be unambiguous.
3. Representation must clearly indicate functional structure. English uses

word order to express what we call functional structure.

AOV triples naturally captures the functional structure by specifying the

structure with an attribute first, an object second, and a value as the last.

Another key idea that may be useful in developing AOV triples is the distinction

between ISA relationships and INST relationships. INST says that a particular

individual is a member of some class, (element). ISA says that one class is a

more general version of another.(subset). For example, suppose there is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

90

elephant whose name is "Clyde". We may say that "Clyde" is an INST

(instance) of the class "elephant" and the class "elephant" ISA higher animal.

INST and ISA are two general relationships between objects. Some

arbitrary relationships between objects can be hypothesized in addition to INST

and ISA. These arbitrary relationships are more likely domain-specific.

Sections 6.4 and 6.5 discuss domain-specific relationships hypothesized in the

specific domain chosen for application.

6.2.2 Representation for Principled Knowledge

Principled knowledge refers to a collection of general principles about

the task environment. Principled knowledge constitutes a problem solver's

conceptual understanding of a domain. In the state constraint formalism,

principles are stated in declarative forms.

A state constraint C is an ordered pair <Cr Cs> of patterns in which each

pattern is similar to the condition of a production rule. The left-hand pattern Cr

is called the relevance pattern, because it determines the class of search states

to which the constraint is relevant. The right-hand pattern Cs is called the

satisfaction pattern, because it encodes the criterion a state must match in order

to satisfy the constraint, given that the relevant pattern matches.

For example, consider the domain principle for counting. A task of

counting requires one to count a set of unordered objects. A representation for

counting consists of symbols for objects (x1, x2,...), numbers (n1, n2, n3,...), and

sets, and four properties (first, current, answer, and origin) and four binary

relations (next, associate, member, and after) among objects. To count a set of

unordered objects is to select repeatedly an object from that set, to increment

the current number, and to associate the new number with the selected object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

When all objects in the set have been associated with numbers, the last number

to be associated with an object is asserted to be the answer to the counting

problem. One counting principle proposed by Gelman and Gallistel (1978) is

the one-to-one mapping principle which states that counting consists of

establishing a one-to-one mapping between numbers and objects. Ohlsson

(1991) breaks this principle down into four components and represents them as

state constraints (see Figure 6.5). For each constraint, the relevant pattern Cr is

shown to the left and the satisfaction pattern Cs to the right, separated by the

arbitrarily chosen symbol

For example, let us take a look on the first principle of standard counting

in Figure 6.5. The first constraint in the one-to-one mapping principle denotes

that if the object X1 is associated with the number N1 and also with the number

N2, then the number N1 and the number N2 must be equal. Similarly, the

second constraint states that if the object X1 is current and X1 is after X2, then

X2 must be associated with a number N. From this example, it may become

clear that the relevance patterns determine the applicability of the constraint

and satisfaction patterns test for its success.

6.2.3 Representation for Procedural Knowledge

PSCD represents procedural knowledge in a set of productions. A

production is an ordered pair of conditions and actions. Viewing from the

perspective of search, a production or a set of productions represent an

operator which transform a state to other state. The appropriate actions to these

productions are determined rather easily because we can observe analogous

actions in the environment. However, conditions which specify the appropriate

context for actions to be applied are seldom obvious (Langley, 1985). As seen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

92

in Chapter 5, studies in strategy learning systems focus on deriving such

conditions from examining a lot of examples or data. Neches (1981) suggests

three types of conditions that a production may have: (a) conditions that define

the context in which the production is applicable; (b) conditions that enable

processing on the action side of a rule; (c) conditions that serve to affect flow of

control

The first type of condition contain knowledge about the circumstances in

which it is meaningful to execute the production. Typically this type of

conditions are instantiated as goals. The second type of condition is usually

necessary in order to assigning values to variables referenced on the action

side. These are legal conditions which must be bound to some values in order

to to instantiate actions. The third type of condition holds heuristic knowledge

about desired sequencing of productions. Langley (1987) suggests the third

type of conditions can be learned by a learning mechanism such as

discrimination learning. Langley's discrimination learning (1987) is a type of

empirical learning because it learns from experience. Ohlsson1 state constraint

theory (1991) is similar to Langley's discrimination learning (1987) in that it

generates more specialized new rules during the course of learning, but it is a

rational learning mechanism because it relies on conceptual knowledge in

building new rules.

In PSCD, procedural knowledge consists of initial knowledge runnable to

generate solutions. Productions representing procedural knowledge impose

minimal guidance on the application of the operators. Two types of conditions,

goal and legal conditions, are attached initially to productions. Goal conditions

specify the meaningful context of productions. Legal conditions are concerned

with retrieving bindings from working memory to instantiate actions; this allows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93

the actions to be executed. But the initial rules do not specify when, under what

circumstances, or in what order the operators should be executed. Therefore

initial productions impose a minimal assumption on the background knowledge

of students. Students are expected at least to know what actions are available

and their associated minimal conditions.

6.2.4 The Strengthening Process

The strengthening process adjusts the level of strength associated with a

state constraint depending on its success or failure in explaining a problem

solving trace of a student. The strength of a state constraint represents the

degree of understanding associated with a state constraint. Thus, for example,

a state constraint with a higher strength than a threshold value may be

considered in making a student model whereas a state constraint with a lower

strength may not be considered. A set of state constraints with higher strengths

than a threshold vaiue and a sei of productions together would make a

runnable student model. Such a runnable student model can be used to predict

student's errors or problem-solving traces in a different set of problems from

those on which a student model is based.

There can be many schemes for the strengthening process. Anderson

(1983), for example, associates the strength of 1 with a production when it is

created, and increases its value when it is successfully applied and decreases

its value by 25% when it applies and receives negative feedback. It is possible

to devise a similar scheme of the Anderson's strengthening process in PSCD.

PSCD, however, assumes the crudest strengthening scheme that hypothesizes

only existence or non-existence of constraints in a student model. Thus,

constraints can have either one of two values: zero (non-existence) or one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94

(existence). Examining problem-solving traces, PSCD will reports violated

constraints as they arise. The set of reported constraints and their frequencies

constitutes a basis for determining the best remedial instruction for correcting

student's cognitive errors. It is assumed that this information would suffice to do

that. Since it is the tutoring model that concerns the issue of determining the

best remedial instruction, more definite conclusion could be achieved by the

future study which includes the tutoring model as well as the diagnosis model.

Until then, this study simply accepts the assumption.

This assumption implies two concerns. First, since this study emphasizes

domain principles in explaining errors, explanations of why errors occur, i.e.,

student models, must be tied with domain principles. Second, given the first

concern, information about violated constraints and, if ever needed by the

tutoring model, their associated violated frequencies would be sufficient to

determine the best remediation. In this study, it is assumed that PSCD

augmented with a strengthening mechanism would suffice to generate

explanations elegant enough to allow sophisticated remediations.

The strengthening mechanism of PSCD can be viewed as a perturbation

technique that generates student models from expert models, because in the

strengthening mechanism a student model is hypothesized as a subset of an

expert model. The perturbation technique of PSCD is different from previous

uses in that it operates on state constraints rather than on procedural

productions (Brown and VanLehn, 1980; Young and O'Shea, 1981) or on

preference productions (VanLehn et al., 1989). Since the correct set of state

constraints represents the conceptual understanding of an expert, the perturbed

set of state constraints represents inadequate conceptual understanding or

misconceptions on the part of novices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

95
6.3 Performance and Diagnosis of PSCD

Two major functions of PSCD are performance and diagnosis. In the

performance mode, PSCD executes a procedure with a set of constraints.

PSCD performs a best-first search with the number of constraint violations as

the evaluation function. The top level function that starts the performance mode

of PSCD is shown in Figure 6.3 The algorithm for a best-first search comes from

Winston (1984, p. 98) and Winston and Horn (1989, p. 281). Initially a one-

element queue consisting of the root node is formed. If there is (halt) in the

working memory, PSCD stops. Otherwise, PSCD proceeds to select the best

path in the queue. The best path is determined by first identifying an equivalent

class of paths which all has the least number of constraint violations, if there are

multiple paths in the equivalent class find another equivalent class of paths,

which all have the longest path, from the least constraint violation class. If there

are still multiple paths in the longest-path class, PSCD will select any path

randomly.

Figure 6.3. The top-level function of performance

While (the queue is not empty)
Begin

If (there is halt) Then Stop
Else

Begin
(Select the best path in the queue)
(Extend the best path by applying productions)
(Add extended paths to the queue)
(Sort the entire queue by the number of constraint violations)

End
End.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The next step is to extend the selected best path to generate new

possible states. PSCD finds applicable productions and all instantiations for

each production. Each instantiation forms a new path. Each instantiation is

fired and the resulting new state is checked to determine the nature and number

of constraint violation. This information is attached to the new path. All new

paths are generated through this process and added to the queue. The entire

queue is then sorted according to the number of constraint violation, in the order

of the least violation path first. The entire process continues until the goal is

achieved (i.e., the "halt" production is fired) or there is no path in the queue.

In the diagnosis mode, PSCD makes a diagnosis in response to a

problem solving trace. The process of the diagnosis mode is much simpler than

that of the performance mode. The top-level function of PSCD for diagnosis is

shown in Figure 6.4. An action sequence, often called action protocol (Kowalski

and VanLehn, 1988; VanLehn et al., 1989b), is an input to the diagnosis

component of PSCD. Diagnosis starts with selecting the first action in the action

sequence. The action is tested if the action is one of the possible actions in the

current state. Since all productions are overly general, once applicable a

production would generate multiple instantiations. The action must be one of

them. PSCD must hold this requirement because state constraints are very

much dependent on productions in their developments and operations. When

the action is not one of possible actions, PSCD may not be able to give correct

diagnosis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97
Figure 6.4. The top-level function of diagnosis

While (the action sequence is not empty)
Begin

(take the first action in the action sequence)
If (the action is not a member of the set of possible instantiations of the

associated production)
Then Stop

Else (find all constraints violated in the state resulting from applying the
action)

End.

The next step of diagnosis is to apply all constraints to the state resulting

from firing the action, and find all relevant constraints. All relevant constraints

that are found are tested if they are satisfied. Unsatisfied constraints, that are

violated constraints, are reported. The tested action is popped our from the

action sequence with which the whole process restarts again. This process

continues until there is no action available in the action sequence.

This study is mainly concerned with the diagnosis of principled errors.

Principled errors are those errors that can be seen as violation of one or more of

constraints. This concern is based on the belief that most errors that can be

found are rooted in inadequate understanding of domain principles or in failure

of applying those basic principles to problems. This belief is based on the

conclusions of a number of studies in cognitive development and cognitive

science (Resnick and Omanson, 1987; Resnick 1982; Gelman and Meek, 1986;

Chi et al., 1982; Chi et al., 1982; Dejong, 1988). It is argued that if students

understood concepts and principles of a domain, then errors would disappear,

procedures would be better retained, and would transfer more easily to novel

problem contexts. Teaching domain principles, however, may not guarantee

skilled performance. As Resnick (1982) observed in the case of arithmetic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

98

problems, children frequently made errors even although they possessed

enough principled understanding necessary to answer correctly. Resnick

(1982) attributed this to an inadequate linking of the principled understanding

with the syntax of the written algorithms. In other words, children have

adequate understanding of principles relevant to the domain but they are not

pretty sure when those principles are relevant. The state constraint formalism is

a wonderful idea because it allows to represent principles in terms of when they

are relevant and how they can be satisfied. Diagnosis of errors in PSCD is

based on this idea.

As explained, diagnosis of principled errors is based on principled and

procedural knowledge. One requirement for diagnosis is that actions observed

in empirical data must be generatable from PSCD's productions. When this

requirement is not met, PSCD cannot guarantee correctness of its diagnosis.

When this is not the case, PSCD proceeds to find violated constraints for each

action and report them. A violated constraint can be interpreted as incomplete

understanding of the constraint on the part of the student. Incomplete

understanding of a principle can be expressed having a lower strength value

than a threshold value. The diagnosis system relates a user's incorrect

performance to violations of constraints which are viewed as incomplete

understanding of those constraints. Thus PSCD hypothesizes that incorrect

performance can be modeled with a perturbed set of constraints and initial

productions.

6.4 Modeling Standard Counting

With PSCD this study models standard counting first to validate its

performance ability and to compare it with HS (Ohlsson and Rees, 1991). This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

99

study takes standard counting as the first application because HS is applied to it

and also because the strongest empirical evidence for the hypothesis that

conceptual understanding facilitates procedure acquisition comes from the

domain of counting. Our first application in standard counting shows how our

program performs on the basis of a state constraint representation of the

principles of counting. This study adopts from Ohlsson and Rees (1991) initial

procedural knowledge (i.e., the problem space) and the model's principled

knowledge (i.e., the state constraints that encode the counting principles). With

these initial procedural and principled knowledge, it will be shown how the

program performs a counting task.

Standard counting involves in counting a set of unordered objects.

Greeno et al. (1984) coined the term "standard counting" to denote a standard

procedure of counting. Its procedure is shown in Figure 6.5. Figure 6.6 shows

a representation for standard counting. The representation includes three types

of entities, their associated properties, and relations among entities. The

objects represent physical objects such as dice (?). The set ToCountSet

represents the collection of objects which need to be counted. Any object can

be a member of the set ToCountSet, which means that the object need to be

counted. An object that is not the member of ToCountSet is physically present

but not need to be counted. Numbers are assumed to be retrieved from a

number sequence. The only relationship between numbers is "next". For

example, (next 3 2) means that the number "3" is next to the number "2." This

representation, therefore, does not assume any prior knowledge of other

relationships such as greater-than or less-than. When a number (n) is assigned

to an object (x), a new assertion (associate x n) is created to represent the new

relationship between the number and the object. The predicate "after" denotes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100

that the object x1 is considered after the object x2. Therefore, the "after"

predicate represents the object sequence of consideration in problem solving.

Figure 6.5. A standard procedure of counting

1. Select repeatedly an object from the set required to be counted, increment
the current number, and to associate the new number with the selected
object.

2. When all objects in the set have been associated with numbers, the last
number to be associated with an object is asserted to be the answer to the
counting problem.

Figure 6.6. A language for standard counting

Types of entities
(a) objects: x1,x2,...

properties: first, current
(b) numbers: n1,n2.....

properties: first, current, answer, origin
(c)sets: ToCountSet

Relations
(a) (next n1 n2): The number n2 is the successor of the number n1 in the

number line.
(b) (associate x n): The object x is associated with the number n
(c) (member x ToCountSet): The object x is a member of a set ToCountSet
(d) (after x1 x2): the object x1 is after the object x2 in a sequence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 6.7. A problem space for standard counting
101

The initial knowledge state
The initial knowledge state for standard counting contains the number
sequence in which numbers are liked to its successor with the next relation,
the set of objects to be counted (ToCountSet), and some additional objects
that are not members of the ToCountSet

Operators
1. (PickFirst x)

add: (first x)(current x)
2. (PickNext x1 x2)

add: (current x2)(afterx2x1)
delete: (current x1)

3. (Initialize n)
add: (first n)(current n)

4. (increment n1 n2)
add: (current n2)(after n2 n1)
delete: (current n1)

5. (associate x n)
add: (associate x n)

6. (assert n)
add: (answer n)

Goal state
The goal is to reach a state in which some number has the property of being
the answer.

Figure 6.7 shows a problem space for standard counting that builds on

that representation. The problem space includes six operators. The initial

knowledge state consists of a set of assertions representing number facts and

objects which belong to ToCountSet as well as objects which do not. Applying

operators to the initial knowledge state generates a set of new states. It is the

search mechanism that navigates the problem space to reach a goal state. In a

standard counting task, the goal state is a state which has an assertion (answer

n).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

102
Figure 6.8 shows working memory elements and initial rules for standard

counting. Initial working memory elements represent the initial knowledge state

for a counting task with 5 numbers and four objects. Each number is declared

as an instance of the 'number' class. The number 1 has a property of being

'origin'. The number 2 has a relationship of being 'next' to the number 1.

Similarly, the number 3 has a relationship of being 'next' to the number 2. Four

objects are declared as instances of the 'object' class. Among them, three

objects (b1, b2, b3) have relations of being member to the ToCountSet The

ToCountSet is declared as an instance of the 'set' class and represents the set

of to-be-counted objects.

The initial rules impose minimal guidance on the application of the

operators. Their main effect is to retrieve bindings for the operator arguments

from working memory; this allows the operators to be executed. But the initial

rules do not specify when, under what circumstances, or in what order the

operators should be executed. This means that PSCD initially does not know

how to count. The set of initial rules represent an executable procedure, and its

execution will generate task-relevant but incorrect behavior. Figure 6.7 and

Figure 6.8 together represent the initial procedural knowledge of PSCD in this

application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 6.8. Initial working memory elements and rules
103

Working-memory
(number 1)(origin 1)
(number 2)(next 2 1)
(number 3)(next 3 2)
(number 4)(next 4 3)
(number 5)(next 5 4)

(object b1)(member b1 ToCountSet)
(object b2)(member b2 ToCountSet)
(object b3)(member b3 ToCountSet)
(object b4)

(set ToCountSet)

Rules
1. (object x) ==> (PickFirst x)
2. (object x1)(current x1)(object x2) ==> (PickNext x1 x2)
3. (number n) ==> (Initialize n)
4. (number n1)(current n1)(number n2) ==> (increment n1 n2)
5. (number n)(current n)(object x)(current x) ==> (associate x n)
6. (number n)(current n) ==> (assert n)
7. (answer n) ==> (halt)

In order to generate correct behavior, PSCD needs principled

knowledge. Building on counting principles, suggested by Gelman and

Gallistel (1978), Ohlsson and Rees (1991) proposed five counting principles

and represented them as state constraints as shown in Figure 6.9. The one-to-

one mapping principle states that counting consists of establishing a one-to-one

mapping between numbers and objects. They break this principle down into

four component ideas: that an object is associated with at least one number,

that an object is associated with at most one number, that a number is

associated with at most one object, and that a number is associated with at least

one object. The cardinal principle states that the answer to a counting problem

is the last number to be associated with an object. This principle is broken

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

104

down into three component ideas: that the size of a set cannot be known until

all objects in the set have been associated with numbers, that the answer is a

number associated with some object, and that the answer is the last number

considered.

The regular traversal principle states that traversing of the number line

begins at unity and then follows the next relations. The state constraint

representation breaks this principle down into four component ideas: that

counting begins with the origin of the number line, that each number considered

is the successor of the previous number, the numbers are considered one at a

time, and that each number is associated with some object. The order

imposition principle imposes a linear ordering on the objects counted. It is

broken down into six component ideas: Only one object is designated as the

first object in the ordering; objects are considered one at a time; no object is

considered twice; an object is not considered after itself; the first object is never

considered again; and finally, no object that is not a member of the to-be-

counted set is considered. Finally, the actions of traversing the number line in

the right way and imposing an order on the objects are not sufficient to produce

correct counting. The two processes must be connected with each other in the

right way. The coordination principle states that objects and numbers are

associated with each other in the order in which they are attended to.

The state constraints in Figure 6.9 represent the principled knowledge of

the PSCD system in counting application. Ohlsson and Rees (1991) claim that

the set of state constraints is complete and is sufficient to determine correct

counting. With the initial knowledge of the system being defined, PSCD is

presented with an example counting problem shown in Figure 6.10. PSCD can

correctly solve the problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

105
Figure 6.9. State constraints

A. The one-to-one mapping principle
1. All object should be associated with at most one number.
(object x1)(number n1)(number n2)(associate x1 n1)(associate x1

n2)**(equal n1 n2)
2. Every object considered during counting should be associated with some

number
(object x1)(object x2)(current x1)(after x1 x2)**(number n)(associate n)
3. A number should be associated with at most one object.
(object x1)(number n1)(object x2)(number n2)(associate x1 n1)(associate

x2 n2)**(equal x1 x2)
4. For every number retrieved during counting, there should be some object

with which it can be associated.
(object x1)(number n)(current n)(associate x1 n)**(current x2)

B. The cardinal principle
1. A number is the answer to a counting problem only if there are no objects

that are members of the to-be-counted set but that has not been
associated with some number.

(number n1)(answer n1)**(object x)(not (member x ToCountSet)(not
(associate x n2)))

2. The answer to a counting problem is one of the numbers associated with
some object.

(number n)(answer n)**(associate x n)
3. The answer to the counting problem is the last number to be considered

in the counting process.
(number n)(answer n)**(current n)
C. The regular traversal principle
1. Initialize counting at the first number in the number line.
(number n)(first n)**(origin n)
2. Consider one number at a time.
(number n1)(number n2)(current n1)(current n2)(equal n2 n1)
3. The numbers should be considered in the order defined by the next

relations.
(number n1)(number n2)(current n1)(after n1 n2)(not (equal n1 n2))**(next

n2 n1)
4. For each number considered, the preceding number should be

associated with some object.
(number n1)(Number n2)(next n2 n1)**(object x)(associate x n2)
D. The order imposition principle
1. Initialize counting with a single object.
(object x1)(object x2)(first x1)(first x2)**(equal x1 x2)
2. Do not consider an object that is already associated with a number.
(object x)(current x)(number n)(not (current n))**(not (associate x n))
3. Do not cycle back to the first object.
(object x1)(first x1)**(not (after x1 x2))
4. Do not consider an object after itself.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 6.9. (Continued)
106

(object x1)(object x2)(after x1 x2)**(not (equal x1 x2))
5. Consider only one object at a time.
(current x1 x2)**(equal x1 x2)
6. Do not consider object that are not in the set of to-be-counted objects,
(object x)(current x)**(member x ToCountSet)
E. The coordination principle
1. Numbers and objects are associated with each other in the order in

which they are considered.
(object x)(number n1)(number n2)(current x)(current n1)(associate x

n2)**(equal n1 n2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107
Figure 6.10. A program trace for an example problem

#S(INSTANCE RULE START ACTIONS NIL VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE PICKFIRST ACTIONS (('ADD-DB (CURRENT B1)) (‘ADD-DB (FIRST B1)))

VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE INITIALIZE ACTIONS ((‘ADD-DB (CURRENT 1)) (‘ADD-DB (FIRST 1)))

VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ASSOCIATE ACTIONS ((‘ADD-DB (ASSOCIATE B1 1))) VIOLATIONS NIL

TOTAL 0)
#S(INSTANCE RULE PICKNEXT ACTIONS ((‘DELETE-DB (CURRENT B1)) (‘ADD-DB (AFTER

B2 B1)) (‘ADD-DB (CURRENT B2))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE INCREMENT ACTIONS ((‘DELETE-DB (CURRENT 1)) (‘ADD-DB (AFTER 2

1)) (‘ADD-DB (CURRENT 2))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ASSOCIATE ACTIONS ((‘ADD-DB (ASSOCIATE B2 2))) VIOLATIONS NIL

TOTAL 0)
#S(INSTANCE RULE PICKNEXT ACTIONS ((‘DELETE-DB (CURRENT B2)) (‘ADD-DB (AFTER

B3 B2)) (‘ADD-DB (CURRENT B3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE INCREMENT ACTIONS ((‘DELETE-DB (CURRENT 2)) (‘ADD-DB (AFTER 3

2)) (‘ADD-DB (CURRENT 3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ASSOCIATE ACTIONS ((‘ADD-DB (ASSOCIATE B3 3))) VIOLATIONS NIL

TOTAL 0)
#S(INSTANCE RULE ASSERT ACTIONS ((‘ADD-DB (ANSWER 3))) VIOLATIONS NIL TOTAL 0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

108
6.5 Modeling Transportation Problem Solving

In this section, PSCD is applied to transportation problem solving, the

main application of PSCD in this study. Transportation problem solving is

usually taught in introductory. Management science has become an integral

part of management education, because it provides a rich set of tools that help

decision makers formulate and solve complex problems in a rational and

systematic way. It has been repeatedly observed that use of management

science tools improves the quality of decision-making.

Teaching and learning management science has not been easy. Many

students have experienced difficulties in understanding the principles that

underlie the formal methods of management science, and using principles in a

specific problem solving contexts. In this study, transportation problem solving is

chosen as a main application task because of its simple structure. In the

following sections, first, transportation problem solving is described, and from

this description, principled and procedural knowledge are extracted and

represented with the representational language of PSCD. Then, PSCD is

demonstrated to be sufficient to solve transportation problems.

6.5.1 Transportation Problem Solving

The transportation problem deals with the transportation of a product

from a number of sources, with limited supplies, to a number of destination with
/

specified demands, at the minimum total transportation cost (Lee et al., 1990).

Transportation problems are a special type of linear programming applications.

Although transportation problems can be solved by the simplex method,

because of their special network structures, many other simple techniques

have been developed. These techniques are generally more efficient than the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109

simplex method, but are actually extensions of the linear programming concepts

and procedures.

The solution procedure for the transportation problem involves first

finding an initial feasible solution and then proceeding iteratively to make

improvements in the solution until an optimal solution is reached. Most

textbooks present three methods for deriving an initial solution: northwest

corner method, least-cost method, and Vogel's Approximation method (VAM).

VAM is generally known to give a better initial solution than the northwest

corner method or the least-cost method. This study applies PSCD architecture

to VAM to study adequacy of the architecture in performing cognitive diagnosis.

VAM consists of making allocations in a manner that will minimize the

penalty cost for selecting the wrong cell for an allocation. The general

procedure for the VAM is shown in Figure 6.11 (Lee et al., 1990). From this

description of the VAM procedure, it may not be hard to find actions needed for

performing the procedure. Although there can be some different set of actions,

this study employes the set of operators as shown in Figure 6. Operators are

described in detail in Section 6.5.2. With these operators, a control structure of

the VAM procedure is defined as in Figure 6.12. The control structure shows

appropriate actions during the course of problem solving.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 6.11. A general procedure of VAM
110

1. Calculate the penalty cost for each row and column. The penalty cost for
each row is computed by subtracting the smallest cost in Ey (denoting the
cell in i-th row and j-th column) in the row from the next smallest cost Ey
value in the same row. Column penalty costs are obtained in the same
way. These costs are the penalties for not selecting the minimum cell
cost.

2. Select the row or column with the greatest penalty cost (breaking any ties
arbitrarily). Allocates as much as possible to the cell Ey with the minimum
value in the selected row or column. As a result, the largest penalties are
avoided.

3. Adjust the supply and demand requirements to reflect the allocation(s)
already made. Eliminate any rows and columns in which supply and
demand have been exhausted.

4. If all supply and demand requirements have not been satisfied, go to the
first step and recalculate new penalty costs. If all row and column values
have been satisfied, the initial solution has been obtained.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

111
Figure 6.12. Control structure

While (there is an applicable rule) or (there is no halt) Do
Begin

if (all lines have zero amount)
Then halt

Else if (there is a line whose current value is zero)
Then Delete-line

Else If (top) and (there is a line with only one blank cell)
Then Copy-allocation

Else
Begin

While (every undeleted line is associated with an opportunity)
Begin

If (there is no calculated penalty)
Then First-cp
Else Next-cp

Calc-penalty
End

Select-line
Select-cell
Determine-allocation-amount
Adjust-amount

End
End

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

112

From the above descriptions, this study identifies four principles

underlying the procedure. These principles are shown in Figure 6.13. It may be

the case that students who understand the above concepts well are able to

derive an initial solution to a transportation problem without much difficulties.

Their performance does not rely on rote procedures but meaningful procedures

(Smith et al., 1989) because their performance rely on these principles. This

study will demonstrate PSCD's capabilities with the example problem (see

Figure 6.14) taken from Lee et al. (1990).

Figure 6.13. Four principles underlying the VAM procedure

1. The opportunity cost principle: We want to minimize the opportunity (i.e.,
regret or penalty) cost for selecting the wrong cell for an allocation. The
motivation is to minimize the total allocation cost.

2. The least-cost allocation principle: We allocate to the cell with least cost
in the selected row or column. The motivation is to minimize the total
allocation cost.

3. Demand/supply requirements: We want to allocate all supply or demand
in such a way that allocations do not violate requirements.

4. The order principle: This principle imposes an order in which problem
solving proceeds. For instance, a line must be selected before selecting
a cell.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

113

Figure 6.14. An example problem (adopted from Lee et al.,1990)

To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

70SUPPLY 1 12050

SUPPLY 2 70

SUPPLY 3 80 80

60 280Demand 150 70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

114

6.5.2 Principled and Procedural Knowledge of Transportation

Problem Solving

In this section, PSCD is applied to transportation problem solving. The

application is discussed in the following order: a representational language for

transportation problems (Figure 6.15), a problem space including a set of

operators and initial knowledge state (Figure 6.16), working memory elements

for an example problem and initial procedural rules (Figure 6.17), and lastly

state constraints (Figure 6.18).

A language for transportation problem solving consists of three types of

entities, their associated properties, and two types of relations (Figure 6.15).

The entity 'line' designates a line in a transportation tableau and has properties

of 'value', 'current-value', and 'status'. The value property and the current-value

property of a line can be only a numerical value. The property status can take

any one of values: nil, selected, or deleted. The value of the value property

represents the amount to be allocated for a source or a destination. The value

of the current-value property represents the allocable

Figure 6.15. A language for transportation problem solving

Types of entities
(a) lines: r1, r2, r3 c1, c2, c3....

properties: value, current-value, status
(b) cells: e11, e12, e13....

properties: parameter, value, status
(c) opportunities: op1, op2, op3.....

properties: first, second, value
Relations

(a) (partof e11 r1): The cell e11 is part of the line r1.
(b) (relate op1 r1): The opportunity op1 is related to the line r1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

115

amount adjusted for the allocations which are already made. The status

property contains information about whether the line is selected for an

allocation or is deleted, the default value of the status property is nil, which

means that any operation has not been performed on this line.

The entity 'cell' represents a cell in a transportation tableau and

represents an allocation from a certain source to a destination. The cell entity

has three properties: parameter, value, and status. The parameter property

contains cost information, the value property represents an allocation amount

assigned to that cell, and the status property represents whether that cell is

selected, deleted, or nil (not deleted). The entity 'opportunity' keeps track of

opportunities associated with lines. The opportunity has three properties: first,

second, and value. The value of the property 'first' indicates the first cell

selected for opportunity calculation. The value of the property 'second'

indicates the second cell selected. The property 'value' contains the

opportunity value calculated from two selected cells. The language for

transportation problem solving includes two relations. The relation 'partof'

specifies which cells belong to which lines. The relation 'relate' relates a line

with an opportunity.

Figure 6.16 describes the initial knowledge state, operators, and the goal

state which collectively determine a problem space for transportation problem

solving. A transportation tableau is described with lines, cells, and their

properties and relationships. There are nine operators operating in a problem

space for transportation problem solving. The three of them, that are First-cp,

Calc-penalty, and Next-cp, are operators that work for calculating penalties for

lines. The operator Select-line selects a line, Select-cell selects a cell,

Determine-allocation-amount determines an appropriate allocation amount,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and Adjust-amount adjusts current values of a row and of a column to reflect the

allocated amount. Delete-line deletes a line. Copy-allocation copy a current

value of a line and write the current value as an allocation for a blank cell.

Operators are interchangeably called actions in the study because this set of

operators are used to transcribe problem solving traces of students into action

protocol (see Chapter 7). A operator has a set of arguments which are

enclosed with parentheses. Arguments are prefixed with the symbol "=" to

denote that they are variables. System related arguments which may not be

easily comprehensible to readers are enclosed with brackets. For example, the

operator First-cp has three arguments: =line, =op, and =op-list. It would be

enough to understand the First-cp action with the information about the selected

line =line. The rest arguments are system related arguments.

Figure 6.17 shows initial working memory elements for an example

transportation problem and initial rules. The example problem has a tableau

which three rows and three columns. Therefore there are nine cells in the

problem. Each cell is defined as an instance of the 'cell' class. A cell is a part of

a column line and a row line. For example, the cell e11 is a part of the column

line c1 and also of the row line r1. The cell e11 has three properties:

parameter, value, and status. The value of parameter property for the cell e11 is

8, the value of value property is zero, and the value of status parameter is nil

which means not deleted.

Figure 6.18 describes state constraints in terms of four principles. The

opportunity principle consists of fourteen constraints. They are (a) an

opportunity value must be calculated for a line which is not deleted, (b) consider

only one line at a time, (c) consider only one opportunity at a time, (d) do not

relate more than one opportunity with a line, (e) do not relate more than one line

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

117

with an opportunity, (f) do not consider a line which is already associated with

an opportunity, (g) a first cell of an opportunity must be part of a line which is

associated with the opportunity, (h) a second cell of an opportunity must be part

of a line which is associated with the opportunity, (i) a first cell of an opportunity

must be a next-least cost cell in a line associated with the opportunity, (j) a

second cell of an opportunity must be a least cost cell in a line associated with

the opportunity, (k) A first cell of an opportunity must not be deleted, (I) a second

cell of an opportunity must not be deleted, (m) select a line which has the

largest opportunity value, and (n) select a line after all lines which are not

deleted are associated with some opportunity. The principle of least cost

allocations consists of two constraints: (a) select a cell which has a least cost

and (b) select a larger current value of two lines of which a selected cell is part.

The principle of demand-supply requirement consists of two constraints: (a)

delete a line whose current value is zero and (b) a value of a line must be equal

to a current value of the line plus total allocations made to the line. The order

principle consists of five principles: (a) select a cell after a line is selected, (b)

determine an allocation amount for a selected cell after the selection of line and

cell, (c) adjust current values of lines given there is a determined amount, (d)

delete a line with zero current value after adjustment, and (e) when all cells

except one cell are deleted, do not calculate penalties.

Now the performance capability of PSCD are demonstrated with the

example problem. The resulting output from PSCD is shown in Figure 6.19. A

program trace in Figure 6.10 is the one randomly selected from the best

possible paths that all can generate a correct solution. Each line that starts with

the "#S" symbol represents a structured object showing information about a

rule's name that are fired, instantiated actions, names of violated constraints,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and the total number of violations until that stage. For example, the second

instance in Figure 6.19 shows that the rule FIRST-CP is fired with instantiated

actions ((‘ADD-DB (CONSIST-OF OPPORTUNITY (*PUSH G377 NIL))) (*DELETE-DB

(CONSIST-OF opportunity nil)), there is no constraint violation from firing this

instantiation, and the total number of violations until that state is zero. In the last

instance, the total number of violations is zero. Hence the solution generated

from this path is correct. This demonstrates that PSCD, with the defined set of

constraints and rules, is sufficient to solve transportation problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

119
Figure 6.16. A problem space for transportation problem solving

The initial knowledge state
The initial knowledge state for transportation problem solving contains
lines which represent rows and columns, cells and opportunities. A cell
can be part of a row and a column and a line can be associated with a
opportunity.

Operators
1. First-cp: focus on the line =line

first-cp (=line [=op =op-list])
(*delete-db (top))
(*add-db (calc-penalty dine))
(*add-db (inst =op opportunity))
(*delete-db consist-of opportunity =op-list))
(*add-db (consist-of opportunity (*push =op =op-list))))

2. Calc-penalty: calculate a penalty for the line dine
calc-penalty (dine [=op =cell-1 =par-1 =cell-2 =par-2])

(*add-db (relate =op =line))
(*add-db (first =op =cell-1))
(*add-db (second =op =cell-2))
(*add-db (value =op (*- =par-1 =par-2))))

3. Next-cp: change focus from =line2 to dinel
next-cp (dinel dine2 [=op =op-list])

(*add-db (calc-penalty =line2))
(*delete-db (calc-penalty dinel))
(*add-db (inst =op opportunity))
(*delete-db (consist-of opportunity =op-list))
(*add-db (consist-of opportunity ('push =op =op-list))))

4. Select-line: select the line dine-a
select-line (dine-a [dine-c])

(*add-db (allocate =line-a))
(*delete-db (calc-penalty dine-c)))

5. Select-cell: select the cell =cell
select-cell ([=line] =cell [=op-list])

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

120
Figure 6.16 (Continued)

(*delete-opportunity =op-list)
(*delete-db (allocate =line))
(*add-db (allocate =line =cell)))

6. Determine-allocation-amount: determine an amount =number to be
allocable

determine-allocation-amount ([=line =cell] =number)
(*add-db (allocate =line =cell =number))
(*delete-db (allocate =line =cell)))

7. Adjust-amount: allocate the determined amount to the selected cell
and adjust the amounts of related row =line-1 and column =line-2

adjust-amount (=line-1 [=current:1] =line-2 [=current-2 =line =cell
=number])
(*add-db (top))
(*delete-db (value =cell 0))
(*add-db (value =cell =number))
(*delete-db (current-value =line-1 =current-1))
(*add-db (current-value =line-1 (*- =current-1 =number)))
(*delete-db (current-value =line-2 =current-2))
(*add-db (current-value =line-2 (*- =current-2 =number)))
(*delete-db (allocate dine =cell =number)))

8. Delete-line: delete the line dine
delete-line (dine [=cell-list])

(*delete-db (status dine nil))(*add-db (status =line deleted))
(*delete-cell =cell-list))

9. Copy-allocation: take the amount of line dinel and write the amount
on the cell =cell

copy-allocation (dinel [=current1] =cell [=line2 =current2])
(*delete-db (current-value d ine l =current1))
(*add-db (current-value =line1 0))
(*delete-db (current-value =line2 =current2))
(*add-db (current-value =line2 (*- =current2 =current1)))
(*delete-db (value =cell 0))(*add-db (value =cell =current1)))

Goal state : The goal is to reach a state in which all lines are deleted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 6.17. Initial Working Memory and Rules

Working Memory Elements
(consist-of line (c1 c2 c3 r1 r2 r3))
(inst rl Iine)(hasr1 (e11 e12 e13))(value r1 120)
(current-value r1 120)(status r1 nil)
(inst r2 line)(has r2 (e21 e22 e23))(value r2 80)
(current-value r2 80)(status r2 nil)
(inst r3 line)(has r3 (e31 e32 e33))(value r3 80)
(current-value r3 80)(status r3 nil)
(instcl Iine)(hasc1 (e11 e21 e31))(value c1 150)
(current-valued 150)(statusc1 nil)
(inst c2 line)(has c2 (e12 e22 e32))(value c2 70)
(current-value c2 70)(status c2 nil)
(inst c3 line)(has c3 (e13 e23 e33))(value c3 60)
(current-value c3 60)(status c3 nil)
(consist-of cell (e11 e12 e13 e21 e22 e23 e31 e32 e33))
(inst e11 cell)(parameter e11 8)(value e11 0)(status e11 nil)
(partof e11 r1)(partof e11 d)
(inst e12 cell)(parameter e12 5)(value e12 0)(status e12 nil)
(partof e12 r1)(partof e12 c2)
(inst e13 cell)(parameter e13 6)(value e13 0)(status e13 nil)
(partof e13 r1)(partof e13 c3)
(inst e21 cell)(parameter e21 15)(valuee21 0)(statuse21 nil)
(partof e21 r2)(partof e21 c l)
(inst e22 cell)(parameter e22 10)(value e22 0)(status e22 nil)
(partof e22 r2)(partof e22 c2)
(inst e23 cell)(parameter e23 12)(value e23 0)(status e23 nil)
(partof e23 r2)(partof e23 c3)
(inst e31 cell)(parameter e31 3)(value e31 0)(status e31 nil)
(partof e31 r3)(partof e31 d)
(inst e32 cell)(parameter e32 9)(value e32 0)(status e32 nil)
(partof e32 r3)(partof e32 c2)
(inst e33 cell)(parameter e33 10)(value e33 0)(status e33 nil)
(partof e33 r3)(partof e33 c3) (consist-of opportunity nil)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

www.manaraa.com

Figure 6.17. (Continued)
122

Rules
1. (inst =line line)(top)
(consist-of opportunity =op-list)(bind =op (gensym)); enable action
= = >

first-cp (=line =op =op-list)
2. (inst =line1 line)(calc-penalty =line1)(inst =line2 line)(*no (top))
(*no ('equal =line1 =line2))
(relate =some dinel)(*no (relate =some =line2))
(consist-of opportunity =op-list)(bind =op (gensym))
= = >

next-cp (=line1 =line2 =op =op-list)
3. (inst =line line)(calc-penalty dine)(*no (top))
('no (relate =some dine))
(inst =op opportunity)(*no (relate =op =some)): added heuristic
(inst =cell-1 cell)(inst =cell-2 cell)(*no ('equal =cell-1 =cell-2))
(parameter =cell-1 =par-1)(parameter =cell-2 =par-2)
(partof =cell-1 =line)(partof =cell-2 =line)
= = >

calc-penalty (dine =op =cell-1 =par-1 =cell-2 =par-2)
4. (top)(inst d ine l line)(current-value dinel =current1)(status =line1 nil)
('no ('equal ^current O))(partof =cell dinel)(status =cell nil)(value =cell 0)
(has d inel dist)(*only-one status nil d is t); added heuristic
(inst dine2 line)(partof =cell dine2)(*no ('equal dinel dine2))
(current-value =line2 =current2)
= = >

copy-allocation (dinel =current1 =cell =line2 =current2)
5. (inst dinel !ine)(status dinel nil)
(inst =op opportunity)(relate =op dinel)
(inst dine2 line)(calc-penalty =line2)
= = >

select-line (=line-a dine-c)
6. (inst =line line)(inst =cell cell)(allocate =line)(partof =cell =line)
(consist-of opportunity =op-list)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 6.17. (Continued)
123

= = >

select-cell (=line =cell =op-list)
7. (inst =cell cell)(allocate =cell)
(inst =line-1 line)(partof =cell dine-1)(current-value =line-1 =current1)
(inst =line-2 line)(partof =cell =line-2)(current-value =line-2 =current2)
(*no (*equal =line-1 dine-2))
= = >

determine-allocation-amount (=!ine =cell =current-1)
8. (inst =cell cell)(allocate =cell =number)(*numberp =number)
(inst =line-1 line)(partof =cell =line-1)(current-value =line-1 =current1)
(inst =line-2 line)(partof =cell dine-2)(current-value =line-2 =current2)
(*no (*equal =line-1 =line-2))
= = >

adjust-amount (=line-1 =current-1 =line-2 =current-2 =line =cell =number)
9. (top)(inst =line line)(current-value =line 0)(status =line nil)
(has dine =cell-list)
= = >

delete-line (dine =cell-list)
10. consist-of line dist)(*every status deleted =list)(top)
= = >

(*add-db (halt))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 6.18. State constraints
124

A. OPPORTUNITY PRINCIPLE
1. An opportunity value must be calculated for a line which is not deleted,
(opportunity-line-not-deleted.
(inst =line line)(calc-penalty dine)
“ (status dine nil))
2. Consider only one line at a time.
(consider-one-line
(inst d inel line)(calc-penalty dinel)
(inst dine2 line)(calc-penalty dine2)(*no (‘ equal d ine l =line2))
“ nil)
3. Consider only one opportunity at a time.
(consider-one-opportunity
(calc-penalty =line)(inst =op1 opportunity)(inst =op2 opportunity)
(‘ no (relate =op1 =some))(*no (relate =op2 =some))(*no (‘ equal =op1
=°p2))
“ nil)
4. Do not relate more than one opportunity with a line,
(relate-one-opp-with-one-line
(calc-penalty =line)(inst =op1 opportunity)(relate =op1 dine)
(inst =op2 opportunity)(relate =op2 dine)(*no (‘equal =op1 =op2))
“ nil)
5. Do not relate more than one line with an opportunity,
(relate-one-line-with-one-opp
(calc-penalty d inel)(inst dine2 line)(relate =op d ine l)
(relate =op dine2)(*no (‘ equal dinel dine2))
“ nil)
6. Do not consider a line which is already associated with an opportunity,
(do-not-consider-line-with-op
(calc-penalty =line)(relate =op1 dine)
(inst =op2 opportunity)(*no (relate =op2 =some))(*no (‘ equal =op1 =op2))
“ nil)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

125
Figure 6.18. (Continued)

7. A first cell of an opportunity must be part of a line which is associated
with the opportunity.
(first-opportunity-same-line
(inst =line line)(calc-penalty =line)(relate =op dine)
(inst =cell cell)(first =op =cell)
“ (partof =cell =line))
8. A second cell of an opportunity must be part of a line which is associated
with the opportunity.
(second-opportunity-same-line
(inst dine Iine)(calc-penalty =line)(relate =op dine)
(inst =cell cell)(second =op =cell)
“ (partof =cell =line))
9. A first cell of an opportunity must be a next-least cost cell in a line
associated with the opportunity.
(opportunity-first-nextleast
(inst dine line)(calc-penalty dine)(relate =op dine)
(inst =cell-1 cell)(first =op =cell-1)(has dine =cetl-list)
“ (‘ nextleast parameter =cell-1 (‘ remove-deleted =cell-list)))
10. A second cell of an opportunity must be a least cost cell in a line
associated with the opportunity.
(opportunity-second-least
(inst dine line)(calc-penalty =line)(relate =op dine)
(inst =cell-2 cell)(second =op =cell-2)(has dine =cell-list)
“ (‘ least parameter =cell-2 (‘ remove-deleted =cell-list)))
11. A first cell of an opportunity must not be deleted,
(first-opportunity-cell-not-deleted
(inst =op opportunity)(calc-penalty dine)(relate =op dine)
(inst =cell-1 cell)(inst =op opportunity)(first =op =cell-1)
“ (status =cell-1 nil))
12. A second cell of an opportunity must not be deleted,
(second-opportunity-cell-not-deleted
(inst =op opportunity)(calc-penalty =line)(relate =op =line)
(inst =cell-2 cell)(inst =op opportunity)(second =op =cell-2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

126
Figure 6.18. (Continued)

" (status =cell-2 nil))
13. Select a line which has the largest opportunity value,
(select-largest-opportunity-line
(inst =line line)(allocate =line)(relate =op dine)
('no (calc-penalty =some))
(consist-of opportunity =op-list)('every value =some =op-list)
" ('largest value =op =op-Iist»
14. Select a line after all lines which are not deleted are associated with
some opportunity.
(select-line-after-all-opportunities
(inst =line-1 line)(allocate =line-1)
(inst =line line)(status dine nil)(*no (relate =some dine))
" nil)

B. LEAST COST ALLOCATIONS
1. Select a cell which has the least cost.
(select-least-cost-cell
(inst =cell cell)(inst dine line)(allocate dine =cell)(has dine =cell-list)
" ('least parameter =cell ('remove-deleted =cell-list)))
2. Select a larger current value of two lines of which a selected cell is part,
(select-maximum-amount-for-allocation
(inst =cell celi)(allocate =cell =number)('numberp =number)
(partof =cell dine-1)(partof =cell dine-2)(*no ('equal dine-1 =line-2))
(current-value dine-1 =val-1)(current-value dine-2 =val-2)(*<= =val-1 =val-
2)
" ('equal =number =val-1))

C. DEMAND SUPPLY REQUIREMENT
1. Delete a line whose current value is zero,
(deleted-line-when-all-amount-allocated
(inst dine line)(has dine =cell-list)(status =line deleted)
(value dine =value)(*no ('equal ('total value =cell-list) =value))
" nil)
2. A value of a line must be equal to a current value of the line plus total
allocations made to the line.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

127
Figure 6.18. (Continued)

(val ue=total+cu rrent
(inst dine line){has =line =cell-list)(current-value dine =current-value)
(value =line =value)
(‘ no (‘ equal =value (*+ (‘ total value =cell-list) =current-value)))
“ nil)

D. ORDER PRINCIPLE
1. Select a cell after a line is selected.
(select-cell-after-select-line
(inst =cell cell)(allocate =cell)
(inst =line line)(or (calc-penalty =some)(allocate =line)(allocate =some
=n umber))
“ nil)
2. Determine an allocation amount for a selected cell after the selection of
line and cell.
(determine-amount-after-select-line/cell
(inst =cell cell)(allocate =cell =amount)(*numberp =amount)
(or (calc-penalty =some)(allocate =some))
“ nil)
3. Adjust current values of lines given there is a determined amount,
(adjust-amount-after-determine
(inst =line line)(current-value =line 0)(status =line nil)
(or (allocate =some)(allocate =some =amount)(calc-penalty =some))
“ nil)
4. Delete a line with zero current value after adjustment,
(delete-line-after-adjust
(inst =line line)(‘ no (top))(current-value =line 0)(*no (status dine deleted))
“ nil)
5. When all cells except one cell are deleted, do not calculate penalties,
(prefer-copy-over-calc-penalty
(inst dine line)(current-value dine =current)(status dine nil)
(‘ no (‘ equal =current 0))(partof =cell dine)(status =cell nil)
(has dine dist)(*only-one status nil dist)
“ (‘ no (calc-penalty =some)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

128
Figure 6.19. A program trace for the example problem

#S(INSTANCE RULE START ACTIONS NIL VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE FIRST-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G377 NIL))) (‘DELETE-DB (CONSIST-OFOPPORTUNITY NIL)) (‘ADD-DB (INST G377
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY R1)) (‘DELETE-DB (TOP))) VIOLATIONS NIL
TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G377 (*- 6 5))) (‘ADD-DB
(SECOND G377 E12)) (‘ADD-DB (FIRST G377 E13)) (‘ADD-DB (RELATE G377 R1)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G396 (G377)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G377))) (‘ADD-DB (INST G396
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C1)) (‘DELETE-DB (CALC-PENALTY R1)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G392 (*- 9 3))) (‘ADD-DB
(SECOND G392 E31)) (‘ADD-DB (FIRST G392 E32)) (‘ADD-DB (RELATE G392 R3)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G262 (G392 G377)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G392 G377))) (‘ADD-DB
(INST G262 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C1)) (‘DELETE-DB (CALC-PENALTY
R3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G262 (*- 8 3))) (‘ADD-DB
(SECOND G262 E31)) (‘ADD-DB (FIRST G262 E11)) (‘ADD-DB (RELATE G262C1)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G242 (G262 G392 G377)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G262 G392 G377)))
(‘ADD-DB (INST G242 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C2)) (‘DELETE-DB (CALC-
PENALTY C1))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G242 (*- 9 5))) (‘ADD-DB
(SECOND G242 E12)) (‘ADD-DB (FIRST G242 E32)) (‘ADD-DB (RELATE G242 C2)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G253 (G242 G262 G392 G377)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G242 G262
G392 G377))) (‘ADD-DB (INST G253 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C3))
(‘DELETE-DB (CALC-PENALTY C2))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G253 (*-10 6))) (‘ADD-DB
(SECOND G253 E13)) (‘ADD-DB (FIRST G253 E33)) (‘ADD-DB (RELATE G253 C3)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE SELECT-LINE ACTIONS ((‘ADD-DB (ALLOCATE R3)) (‘DELETE-DB
(CALC-PENALTY C3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE SELECT-CELL ACTIONS ((‘DELETE-DB (ALLOCATE R3)) (‘ADD-DB
(ALLOCATE R3 E31)) (‘DELETE-OPPORTUNITY (G253 G242 G262 G392 G377 G366)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE DETERMINE-ALLOCATION-AMOUNT ACTIONS ((‘DELETE-DB
(ALLOCATE E31)) (‘ADD-DB (ALLOCATE E31 80))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ADJUST-AMOUNT ACTIONS ((‘DELETE-DB (ALLOCATE E31 80)) (‘ADD-
DB (CURRENT-VALUE C1 (*-150 80))) (‘DELETE-DB (CURRENT-VALUE C1 150)) (‘ADD-DB
(CURRENT VALUE R3 (*- 80 80))) (‘DELETE-DB (CURRENT-VALUE R3 80)) (‘ADD-DB (VALUE
E31 80)) (‘DELETE-DB (VALUE E31 0)) (‘ADD-DB (TOP))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E31 E32 E33)) (‘ADD-DB
(STATUS R3 DELETED)) (‘DELETE-DB (STATUS R3 NIL))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE FIRST-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G275 NIL))) (‘DELETE-DB (CONSIST-OFOPPORTUNITY NIL)) (‘ADD-DB (INST G275
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY R2)) (‘DELETE-DB (TOP))) VIOLATIONS NIL
TOTAL 0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

129
Figure 6.19. (Continued)

#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G275 (*-12 10))) (‘ADD-DB
(SECOND G275 E22)) (‘ADD-DB (FIRST G275 E23)) (‘ADD-DB (RELATE G275 R2)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G286 (G275)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G275))) (‘ADD-DB (INST G286
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY R1)) (‘DELETE-DB (CALC-PENALTY R2)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G286 (*- 6 5))) (‘ADD-DB
(SECOND G286 E12)) (‘ADD-DB (FIRST G286 E13)) (‘ADD-DB (RELATE G286 R1)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G297 (G286 G275)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G286
G275))) (‘ADD-DB (INST G297 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C3)) (‘DELETE-DB
(CALC-PENALTY R1))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G297 (*-12 6))) (‘ADD-DB
(SECOND G297 E13)) (‘ADD-DB (FIRST G297 E23)) (‘ADD-DB (RELATE G297 C3)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G308 (G297 G286 G275)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G297 G286 G275)))
(‘ADD-DB (INST G308 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C2)) (‘DELETE-DB (CALC-
PENALTY C3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G308 (*-10 5))) (‘ADD-DB
(SECOND G308 E12)) (‘ADD-DB (RRST G308 E22)) (‘ADD-DB (RELATE G308 C2)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNrTY (‘PUSH
G326 (G308 G297 G286 G275)))) (‘DELETE-DB (CONSIST-OF OPPORTUNrTY (G308 G297
G286 G275))) (‘ADD-DB (INST G326 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C1))
(‘DELETE-DB (CALC-PENALTY C2))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G326 (*- 15 8))) (‘ADD-DB
(SECOND G326 E11)) (‘ADD-DB (RRST G326 E21)) (‘ADD-DB (RELATE G326 C1)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE SELECT-LINE ACTIONS ((‘ADD-DB (ALLOCATE C1)) (‘DELETE-DB
(CALC-PENALTY C1))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE SELECT-CELL ACTIONS ((‘DELETE-DB (ALLOCATE C1)) (‘ADD-DB
(ALLOCATE E11)) (‘DELETE-OPPORTUNITY (G326 G308 G297 G286 G275))) VIOLATIONS
NIL TOTAL 0)
#S(INSTANCE RULE DETERMINE-ALLOCATION-AMOUNT ACTIONS ((‘DELETE-DB
(ALLOCATE E11)) (‘ADD-DB (ALLOCATE E11 70))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ADJUST-AMOUNT ACTIONS ((‘DELETE-DB (ALLOCATE E11 70)) (‘ADD-
DB (CURRENT-VALUE R1 (*-120 70))) (‘DELETE-DB (CURRENT-VALUE R1 120)) (‘ADD-DB
(CURRENT-VALUE C1 (*- 70 70))) (‘DELETE-DB (CURRENT-VALUE C1 70)) (‘ADD-DB (VALUE
E11 70)) (‘DELETE-DB (VALUE E11 0)) (‘ADD-DB (TOP))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E11 E21 E31)) (‘ADD-DB
(STATUS C1 DELETED)) (‘DELETE-DB (STATUS C1 NIL))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE RRST-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G354 NIL))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY NIL)) (‘ADD-DB (INST G354
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C2)) {‘DELETE-DB (TOP))) VIOLATIONS NIL
TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G354 (*-10 5))) (‘ADD-DB
(SECOND G354 E12)) (‘ADD-DB (RRST G354 E22)) (‘ADD-DB (RELATE G354 C2)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G359 (G354)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G354))) (‘ADD-DB (INST G359
OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY C3)) (‘DELETE-DB (CALC-PENALTY C2)))
VIOLATIONS NIL TOTAL 0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

130
Figure 6.19. (Continued)

#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G359 (*-12 6))) (‘ADD-DB
(SECOND G359 E13)) (‘ADD-DB (FIRST G359 E23)) (‘ADD-DB (RELATE G359 C3)))
VIOLATIONS NIL TOTAL 0)
^(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G364 (G359 G354)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G359 G354))) (‘ADD-DB
(INST G364 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY R1)) (‘DELETE-DB (CALC-PENALTY
C3))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G364 (*- 6 5))) (‘ADD-DB
(SECOND G364 E12)) (‘ADD-DB (FIRST G364 E13)) (‘ADD-DB (RELATE G364 R1)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE NEXT-CP ACTIONS ((‘ADD-DB (CONSIST-OF OPPORTUNITY (‘PUSH
G369 (G364 G359 G354)))) (‘DELETE-DB (CONSIST-OF OPPORTUNITY (G364 G359 G354)))
(‘ADD-DB (INST G369 OPPORTUNITY)) (‘ADD-DB (CALC-PENALTY R2)) (‘DELETE-DB (CALC-
PENALTY R1))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE CALC-PENALTY ACTIONS ((‘ADD-DB (VALUE G369 (*-12 10))) (‘ADD-DB
(SECOND G369 E22)) (‘ADD-DB (FIRST G369 E23)) (‘ADD-DB (RELATE G369 R2)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE SELECT-LINE ACTIONS ((‘ADD-DB (ALLOCATE C3)) (‘DELETE-DB
(CALC-PENALTY R2))) VIOLATIONS NIL TOTAL O)
#S(INSTANCE RULE SELECT-CELL ACTIONS ((‘DELETE-DB (ALLOCATE C3)) (‘ADD-DB
(ALLOCATE E13)) (‘DELETE-OPPORTUNITY (G369 G364 G359 G354))) VIOLATIONS NIL
TOTAL 0)
#S(INSTANCE RULE DETERMINE-ALLOCATION-AMOUNT ACTIONS ((‘DELETE-DB
(ALLOCATE E13)) (‘ADD-DB (ALLOCATE E13 50))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE ADJUST-AMOUNT ACTIONS ((‘DELETE-DB (ALLOCATE E13 50)) (‘ADD-
DB (CURRENT-VALUE R1 (‘- 50 50))) (‘DELETE-DB (CURRENT-VALUE R1 50)) (‘ADD-DB
(CURRENT-VALUE C3 (*- 60 50))) (‘DELETE-DB (CURRENT-VALUE C3 60)) (‘ADD-DB (VALUE
E13 50)) (‘DELETE-DB (VALUE E13 0)) (‘ADD-DB (TOP))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E11 E12 E13)) (‘ADD-DB
(STATUS R1 DELETED)) (‘DELETE-DB (STATUS R1 NIL))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE COPY-ALLOCATION ACTIONS ((‘ADD-DB (VALUE E23 10)) (‘DELETE-
DB (VALUE E23 0)) (‘ADD-DB (CURRENT-VALUE R2 (*- 80 10))) (‘DELETE-DB (CURRENT-
VALUE R2 80)) (‘ADD-DB (CURRENT-VALUE C3 0)) (‘DELETE-DB (CURRENT-VALUE C3 10)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE COPY-ALLOCATION ACTIONS ((‘ADD-DB (VALUE E22 70)) (‘DELETE-
DB (VALUE E22 0)) (‘ADD-DB (CURRENT-VALUE R2 (*- 70 70))) (‘DELETE-DB (CURRENT-
VALUE R2 70)) (‘ADD-DB (CURRENT-VALUE C2 0)) (‘DELETE-DB (CURRENT-VALUE C2 70)))
VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E21 E22 E23)) (‘ADD-DB
(STATUS R2 DELETED)) (‘DELETE-DB (STATUS R2 NIL))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E13 E23 E33)) (‘ADD-DB
(STATUS C3 DELETED)) (‘DELETE-DB (STATUS C3 NIL))) VIOLATIONS NIL TOTAL 0)
#S(INSTANCE RULE DELETE-LINE ACTIONS ((‘DELETE-CELL (E12 E22 E32)) (‘ADD-DB
(STATUS C2 DELETED)) (‘DELETE-DB (STATUS C2 NIL))) VIOLATIONS NIL TOTAL 0)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

131
6.6 Summary

In this chapter, PSCD is formally presented. PSCD is based on problem

space representation, and consists of three components: productions, state

constraints, and a strengthening process. PSCD is applied to a counting task

as an initial validation of its performance ability, and to a transportation problem

which is a main task of this study. PSCD is shown to be sufficient to perform a

transportation problem solving as well as counting.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

132
Chapter 7 VALIDATION OF THE MODEL

7.1 Validation Methodology

The validation methodology employed in this study is the criterion of

sufficiency (Newell, 1973a; Ohlsson and Rees, 1991). Newell (1973a)

observed two constructions that had dominated in traditional psychology

experimental studies: (a) at a low level, the discovery and empirical exploration

of phenomena and (b) at the middle level, the formulation of questions to be put

to nature that center on the resolution of binary oppositions. Newell argued that

experimental studies at the low and middle level typically tried to formulate a

local theory from observing phenomena and attempted with local methods to

falsify the theory or provide evidence for the failure of falsification. What is

missing, it is argued, is a frame that constrains what other methods might also

be evoked to perform the same task. In short, they did not consider the total

method which would model the control structure as well. Newell argued for the

development of a grand theory which might be driven by general concerns such

as exploring learning or development.

Newell (1973a) suggested three strategies for developing a high level of

grand theory. The first was to build complete processing models for individual

tasks. Simulations must specify the detailed control structure and detailed

assumptions about memories and elementary processes, and must be sufficient "

to reproduce data. This sufficiency criterion reduces the degrees of freedom

that allow so many models to coexist with the same data. Newell's second

suggestion was to analyze a complex task and do all of it. The aim is to

demonstrate that one has a sufficient theory of human behavior. Again the aim

was to reduce the range of possible models consistent with the data, in this

case by increasing the amount and variety of data for which the models must

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

133

account. The third suggested strategy is to build a complete processing model

that perform many complex tasks.

In his recent book, Newell (1990) elaborates on his position about the

grand theory approach and further argues that building a large scale program

which would put together and synthesize our existing understanding of

cognition will provide a new way for psychology to leap forward. Newell

explains his position for unified theories of cognition as follows:

The task at hand is to try to get some candidate theories that have a large
enough scope in order to get the gains inherent in such unification, and
to show us all that they are real. The task is somehow to cajole ourselves
into putting it all together, even though we don't know many of the
mechanisms that are operating. The long run can be entrusted to take
care of the eventual emergence of a single unified theory and how that
convergence or selection will take place. (Newell, 1990, p. 17)

Newell continues to argue that:

If there is any property that a theory of cognition must explain it is how
intelligence is actually possible. Necessary characteristics are well and
good, but they are substantially less than half the story. Sufficiency is all-
important. Intelligence itself is a sufficiency of capability. To be
intelligent is to be able to do certain things.... (Newell, 1990, p. 158)

From these remarks, it can be said that the objective of building a large scale

program is to show that it is indeed capable of doing certain things that are wide

in scope. Newell's arguments for the grand theory and the sufficiency criterion

actually have a root in his belief of what a theory is.

According to Newell (1990), a theory is some body of explicit knowledge,

from which answers can be obtained to questions by inquiries. Some answers

might be predictions, some might be explanations, some might be prescriptions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

134

for control. If this body of knowledge yields answers to those questions, it can

be called a theory. The essential role of a theory, be it just a collection of facts

or the fundamental axioms of a subject matter, is to provide needed answers.

Newell then defined a theory as an explicit body of knowledge, from which

answers can be obtained by anyone skilled in the art. From this perspective,

Newell explained properties associated with a theory. Theories are not objects

of discrimination, but of approximation. Theories cannot be absolute because

the world can't be known with absolute certainty. Rather theories approximate

the truth in nature. Usefulness often traded off against truth. Theories that are

known to be wrong continue to be used, because they are the best available, for

instance Fitts' law. Theories are treated as a tool to be used for some externally

useful purpose. Theories cumulate. They are refined and reformulated,

corrected and expanded. Theories are not just falsified but refined and

expanded.

Newell's position about a theory and a methodology can be summarized

as follows. The role of a theory lies in its usefulness as well as its truth. We

must build a large-scale program which integrates as many known things as

possible, and demonstrate that it is sufficient to perform diverse and complex

tasks. Doing this way yields several benefits: bearing more constraints;

increase in identifiability; avoiding irrelevant-specification problem; and

allowing practical application (Newell, 1990, pp. 21-23). His formulation can

solve such methodological problems as identifiability and irrelevant-

specification problems and also opens a way for application. His formulation

merits attention, at least from cognitive scientists who have applications in mind,

not only because of its methodological advantages but also because of its

possibilities for application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

135

Although Newell's formulation has received wide acceptance (Anderson,

1983; VanLehn, 1991), Simon (1989) pointed out that we still needed the

collection and analysis of empirical data to help us decide alternative models of

performance and to eventually find a small set of basic mechanisms underlying

more comprehensive models. Simon contrasted alternative research styles:

Newell’s style which prefers top-down theory construction from a hypothesis

about the control system to build a highly homogeneous cognitive mechanism,

and the position of traditional experimental psychologists who prefers bottom-

up construction from careful quantitative observation of phenomena to build a

specialized component for performing a particular range of tasks. Although

Simon agreed on the difficulties of resolving conflicting empirical data soon and

arriving at a unified picture of the HIP system just with specialized components,

he argued that we must recognize usefulness of empirical data in generating

quantitative invariants on which such a unified system must be based. What

Simon says is that the necessary criterion also counts.

Simon's observation on contrasting methodologies has similar

repercussions of Miller's account (Miller, 1978). Miller differentiated two

competing methodologies, theory demonstration and theory development.

Theory demonstration is concerned with validating a theory through empirical

data, whereas theory development involves building a theory into a computer

model and showing that the theory is sufficient to account for the phenomenon

under study. In addition to these two competing methodologies, there can be

some other types of methodologies that have been used in Al studies.

Hall and Kibler (1985) described and organized Al methodologies into

five categories (Figure 7.1). They used two dimensions for classifying Al

methodologies. The first of two dimensions is artificiality of the computational

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

136

mechanisms under study. The issue of the artificiality differentiates Al studies

which are undertaken with the intent of exploring human cognitive phenomena

from studies of intelligent functioning by any computational mechanisms

possible. The second that can differentiate differing methodologies is the

generality of reasoning methods sought. This dimension of generality

distinguishes between studies of developing computation techniques for a

specific applications and research aimed at discovering general reasoning

mechanisms. They recognized that the classification by these two dimensions

could be incompletely filled because they could not find a study that could fit the

cell formed by specific reasoning mechanisms and human cognitive

phenomena, and also admitted that the some of Al studies would not be

unambiguously categorized under the proposed classification scheme because

researchers usually shifted between and shared differing perspectives. Even

with these seemingly ambiguity and inexactness, Hall and Kibler's classification

appeals to be of great value in understanding differing methodologies and also

in positioning our study in an appropriate perspective from the total picture of Al

methodologies.

Viewing from the perspective of Hall and Kibler's categorization, this

study can be put under the "natural" category because this study follows the

traditions of cognitive modeling. Under the label of natural, there are two

subcategories: empirical and speculative. The empirical study typically

demonstrates correspondence between behavior of artificial and natural

systems, whereas the speculative study presents an analysis of natural

intelligence but does not make rigorous efforts to demonstrate empirical

evidence for correspondence between artificial and natural systems. This study

is empirical to the extent that PSCD is demonstrated to show its abilities to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

137

perform and to make diagnosis in the same way as shown in empirical data.

This study is also speculative to the extent that it does not validate but simply

accepts the hypothesis that symbolic search space (Newell and Simon, 1972;

Newell, 1990) is the right paradigm in the domain of management science as

Figure 7.1. Hall and Kibler's (1985, p. 171) typology

(Artificiality)

Artificial

(Generality)

NaturalPrinciples

Uerificiation)(Direction)

Performance constructive Formal EmpiricialSpeculative

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

138

well, and that bugs that can be found in transportation problem solving are

mainly originated from students' attempts to derive procedures from inadequate

conceptual knowledge as in bugs found in the domain of counting and

arithmetics (Resnick, 1982,1983; Greeno et al., 1984; Ohlsson and Rees,

1991). This study is empirical in some parts and speculative in other aspects.

Although Hall and Kibler's classification scheme is not able to position our study

unambiguously in one perspective, their scheme is still of value because this

study's methodological perspectives can be explicitly stated with their scheme.

With Simon's (1989) distinction between top-down and bottom-up

constructions, these two perspectives may be added as subcategories under

the empirical category. This study approaches the problem in the top-down

fashion. This study initially delineates the functional architecture, PSCD, for

cognitive diagnosis with heavy reliance on previous works (Langley, 1985;

Langley et al., 1990; Anderson, 1983, 1989; Newell, 1990; Gelman and Meek,

1986; Ohlsson and Rees, 1991; Greeno et al., 1984). Most cognitive theories

are built into PSCD. Then PSCD is applied to transportation problem solving

tasks to demonstrate its capabilities of performance and diagnosis.

7.2 Data Collection

Data are problem-solving traces of students. Collected data are used to

be compared with PSCD's problem solving traces and also to test PSCD for its

ability to make correct diagnosis given students' incorrect traces. A test with

three transportation problems (see Figure 7.2) was made and given to students

as a class quiz. All problems required students to derive initial solutions by the

VAM method. Before giving the quiz, instructors explained the concepts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

139

underlying the VAM method and gave an example of it. Right after this

instruction, the quiz was distributed to students. Students were asked to show

Figure 7.2. Transportation problems

Problem 1. Set up the initial table by URM method

To
Fromx\ v̂ DEMAND 1 DEMAND 2 DEMAND 3 Supply

SUPPLV 1
8 5 6

120

SUPPLV 2
15 10 12

80

SUPPLY 3
3 9 10

80

Demand 150 70 60 280

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

140
Figure 7.2. (Continued)

Problem 2. Set up the initial table by URM method

DEMAND 1 DEMAND 2 DEMAND 3 DEMAND 4

SUPPLY 1
1 0 0 20 1 1

20

SUPPLY 2
12 7 9 20

10

SUPPLY 3
0 14 16 18

•

J

5 15 15 10

Problem 3. Set up the initial table by URM method

DEMAND 1 DEMAND 2 DEMAND 3 DEMAND 4

SUPPLY 1
12 10 9 15

36

SUPPLY 2
10 8 2 10

25

SUPPLY 3
9 5 15 8

30

SUPPLY 4
0 0 0 0

30

26 40 25 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

141

each solution steps explicitly. In order to provide enough space for them to

write every steps additional blank transportation tableau were provided to each

problem. Students were urged to finish the quiz and to use any procedure that

would make sense to them even if their understanding of the VAM method was

minimal. Students were informed that the quiz counted on their grades and

asked to do their best.

The quiz was administered in three classes of MGT 245. Since MGT

245 is the introductory course of management science, it is assumed that

students do not have general background knowledge of management science

that can be transferred and used in transportation problem solving. In other

words, it is assumed that student errors arise only from incomplete

understanding of principles of transportation problem solving, not from buggy

procedures that result from attempts of using similar knowledge of management

science (e.g., Linear Programming). Data from the first class were largely used

for tuning PSCD's working memory elements, rules, and constraints that were

initially developed from the description of the VAM method in the textbook (Lee

et al., 1990). The number of data items (i.e., number of answer sheets that show

incorrect solutions) collected from the other two classes was 38. The next

section presents the results of the analysis and explanations.

7.3 Results and Explanations

Reviewing the data revealed error patterns that can be usefully grouped

in terms of violations of state constraints. In order to keep the discussion

focused, this study will use the first problem in the quiz to illustrate five cases.

The first step was to translate problem solving traces shown in answer sheets

into action protocol. An action is a list which has the name of action as the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

142

element and a set of arguments that follows the name. Arguments of each

operator show the specific instantiation (i.e., variable bindings) of the operator.

For example, in Figure 7.3 the first action in the action protocol is (first-cp r1 op1

nil). The action shows that a student takes the r1 as the first line to calculate a

penalty.

Figure 7.3 shows the partial answer in the form of transportation tableau,

the action protocol of subject-1, and diagnosis results of PSCD. Each iteration

of VAM procedure is separated by a dotted line to make the protocol more

readable. The action protocol is the input to PSCD and PSCD generates a

report showing violated constraints, if any. The report generated by PSCD is

edited and shown in the context of the original action protocol. Lists which have

constraint names in capital letters show violated constraints of the respective

state. Subject-1 appears to have difficulties in in applying two constraints,

FIRST-OPPORTUNITY-CELL-NOT-DELETED and OPPORTUNITY-FIRST-

NEXTLEAST, during his problem solving process. Apparently these two

constraints were not considered when they should have been. His error is

calculating penalties with deleted cells. Curiously he did not violate these

constraints at the first iteration but committed violations at the consecutive two

iterations. Given this apparent inconsistency, it may be argued that this error is

not related to principled understanding but can be viewed as just a slip. Some

researchers argued for slips as the main cause of most errors (Anderson and

Jeffries, 1985), and others distinguished mistakes from slips and attempted to

model the process that might cause mistakes (Brown and VanLehn, 1980). Yet

it is also argued that the distinction between slips and mistakes may not be as

clear as expected (Payne and Squibb, 1990).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.3. The action protocol of subject-1
143

To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

SUPPLV 1 120

80SUPPLY 2

SUPPLV 3 8080

60 280Demand 70150

© 4 4
(1 5 - 8) (9 - 5) (1 0 - 6)

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 ’op2 ’e23 12 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1))
(calc-penalty 'r3 ’op3 'e32 9 'e31 3)
(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 'op4 'e11 8 'e31 3)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e32 9 'e12 5)
(next-cp ’c2 ’c3 ’op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 'op6 'e33 10 'e13 6)
(select-line 'r3 ’c3)
(select-cell 'r3 'e31 '(op6 op5 op4 op3 op2 op1))
(determine-allocation-amount 'r3 'e31 80)
(adjust-amount 'r3 80 'c1 150 'r3 'e31 80)
(delete-line 'r3 '(e31 e32 e33))

(first-cp *r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp Y2 'c1 'op3 '(op2 op1))
(calc-penalty ’c1 ’op3 ’e21 15 ’e11 8)
(next-cp ’c1 ’c2 ’op4 ’(op3 op2 op1))
(calc-penalty 'c2 'op4 'e32 9 'e12 5)
; (FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST)
(next-cp 'c2 'c3 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c3 'op5 'e33 10 'e13 6)
;(FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST)
(select-line 'c1 ’c3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.3. (Continued)

(select-cell 'c1 'e11 '(op5 op4 op3 op2 op1))
(determine-allocation-amount 'c1 'e11 70)
(adjust-amount 'c1 70 'r1 120 'c1 'e11 70)
(delete-line 'c1 *(e11 e21 e31))

(first-cp *r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 *(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'c2 'op3 '(op2 op1))
(calc-penalty 'c2 ’op3 ’e32 9 'e12 5)
;(FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST)
(next-cp 'c2 'c3 'op4 '(op3 op2 op1))
(calc-penalty 'c3 'op4 'e33 10 'e13 6)
;(FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST)
(select-line ’c3 ’c3)
(select-cell 'c3 'e13 '(op4 op3 op2 op1))
(determine-allocation-amount 'c3 'e13 50)
(adjust-amount 'r1 50 'c3 60 'c3 ’e13 50)
(delete-line *r1 '(e11 e12 e13))

(copy-allocation ’c2 70 'e22 'r2 80)
(copy-allocation 'c3 10 'e23 'r2 10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

145

The distinction between slips and mistakes is currently widely accepted

in the literature on cognitive errors (Anderson and Jeffries, 1985; Norman, 1981;

Kowalski and VanLehn, 1988; Langley et al., 1990; Reason, 1990). The

distinguishing factor between these two types of errors is intention. Slips occur

when actions deviate from current intention due to execution failures and/or

storage failures. In mistakes, actions may run according to plan, but where the

plan is inadequate to achieve its desired outcomes. Thus, slips are unintended

actions, whereas mistakes are intended but mistaken actions. Both are the

same in that they fail to achieve their original goals.

It has been questioned whether errors that are found are mostly slips or

mistakes. Anderson and Jeffries (1985) reported that, in the study of novice

LISP programmers, the majority of errors were slips due to losses of information

in working memory rather than mistakes. Brown and Burton (1978), however,

showed that most arithmetic errors made by children were systematic and could

be explained by bugs. Bugs are erroneous variants of a procedure and thus

denote intentional actions (see 5.1.1 for additional discussion about bugs).

Bugs are constructed through purely syntactic manipulation of symbols (Young

and O'Shea, 1981; Brown and VanLehn, 1980). Given the massive amount of

data and conceptual works that support the constructivist assumption and the

importance of conceptual understanding in understanding performance (see

4.3), a need arose to consider a process of semantic rationalization in

interpreting students' errors. Errors that result from faulty semantic

rationalization process are differentiated from bugs and are called

misconception (Langley et al., 1990). A misconception involves a person's

beliefs about the world and implies faulty understanding, whereas a bug is

inherently procedural and implies faulty performance. Langley et al. (1990)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

146

differentiated slips from errors, and further refined errors between bugs and

misconception. Since it is believed that misconceptions are fundamental errors

that cause bugs to happen, the study focuses on diagnosing misconceptions.

An interesting question becomes whether a slip is easily distinguishable

from an error. Examining algebra mal-rules, Payne and Squibb (1990) argued

that mal-rules might not be characterized as the occurrence of a mistake but the

co-occurrence of a slip and a mistake. In other words, there is "pure" mistake in

their errors. They pointed out two implications. First, the slip/mistake distinction

is not like all-or-nothing, either students know the right rule but slip in its

execution, or they do not know the right rule and must perform local problem

solving, or apply an incorrect version of the rule. Rather, errors arise when

students are aware of the right rule in some degree but not strong enough to

use it. In this case, an appropriate computational mechanism is a strengthening

mechanism (Langley, 1985). There can be a case that a weaker faulty rule is

preferred to a strong correct rule. For this case, a partial matching system can

be used in addition to a strengthening mechanism (Anderson, 1983; Reason,

1990).

The second implication is that new (mal-)rules may arise when a student

attempts to make sense of his current procedure. Here again the role of

semantics is emphasized in explaining error generation. Payne and Squibb

(1990) then proposed a theoretical framework for explaining algebra errors. The

main insights are twofolds. First, errors can be modelled by a strengthening

mechanism that adjusts the applicability of rules. Second, the value of strength

is determined by rule usages and also by semantic rationalization of rules.

PSCD is based on these notions. AS explained earlier, PSCD assumes the

crudest strengthening mechanism which hypothesizes only existence or non-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

147

existence of constraints in a student model. The value of strength associated

with a constraint is determined by its satisfaction or non-satisfaction. The

frequency of violations can be also calculated, if needed by the tutoring model.

From this diversion, it may become clear that it does not matter if subject-

1's errors are slips or mistakes, but what matters is that his errors can be

usefully viewed as violations of two principles. In addition, the cause of

violations can be explained as lack of strength associated with constraints.

The rest of the data in Figure 7.4 to Figure 7.7 also shows students'

errors as violations of some principles. Subject-2 in Figure 7.4 calculated a

penalty for a deleted line, subject-3 in Figure 7.5 did not take the least-cost cell

into consideration in calculating a penalty, subject-4 failed to calculate penalties

for all undeleted lines, and subject-5 made many different types of errors.

Examining original answer sheets that were corrected by instructors, it was

found that PSCD's diagnosis was generally compatible with instructors’

corrections.

7.4 Summary

In Chapter 6, PSCD is shown to be sufficient to perform transportation

problem solving as well as counting. In this chapter, PSCD is applied to the

task of diagnosis. Input data to PSCD are action protocols. An action protocol

is a sequence of actions with appropriate arguments. Output of PSCD is

violated constraints.

To examine the PSCD's diagnosis capability, students' answer sheets to

VAM questions were collected in three introductory management science

classes. Students' answers were transcribed to action protocols. PSCD was

run in the diagnosis mode with action protols and reported constraint violations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

148

are gathered. PSCD's diagnoses and instructors' corrections were compared.

It was found that PSCD's diagnoses were generally compatible with instructors'

corrections. It appears that the set of constraints hypothesized for VAM problem

solving is sufficient to make diagnosis of most errors that can happen in VAM

problem solving.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.4. The action protocol of subject-2
149

To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

SUPPLV 1 120

80SUPPLV 2

SUPPLV 3 8080

60 280Demand 70150

© 5
(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1))
(calc-penalty 'r3 ’op3 'e32 9 ’e31 3)
(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 ’op4 'e11 8 'e31 3)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e32 9 ’e12 5)
(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 'op6 'e33 10 'e13 6)
(select-line Y3 'c3)
(select-cell 'r3 'e31 '(op6 op5 op4 op3 op2 op1))
(determine-allocation-amount 'r3 'e31 80)
(adjust-amount 'r3 80 'c1150 'r3 'e31 80)
(delete-line 'r3 '(e31 e32 e33))

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 *(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1)); error - cal-penalty for deleted line
;(OPPORTUNITY-LINE-NOT-DELETED)
(calc-penalty 'r3 'op3 ’e32 9 ’e31 3)
;(SECOND-OPPORTUNITY-CELL-NOT-DELETED FIRST-OPPORTUNITY-CELL-NOT-

DELETED OPPORTUNITY-SECOND-LEAST OPPORTUNITY-FIRST-NEXTLEAST
OPPORTUNITY-LINE-NOT-DELETED)

(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 'op4 'e21 15 'e31 3)
;(SECOND-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-SECOND-LEAST)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.4. (Continued)

(calc-penalty 'c2 'op5 'e22 10 'e12 5)
(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1))
(calc-penalty *c3 'op6 'e23 12 'e13 6)
(select-line 'c1 'c3)
(select-cell 'c1 'e11 '(06 o5 o4 o3 o2 o1))
(determine-allocation-amount'c1 'e11 70)
(adjust-amount 'c1 70 'r1 120 'c1 'e11 70)
(delete-line 'c1 ’(e11 e21 e31))

(first-cp 'r1 'op1 nil)
(calc-penalty V1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty ’r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1)); ;error - cal-penalty for deleted line
(calc-penalty Y3 'op3 'e32 9 'e31 3)
(next-cp 'r3 'c1 ’op4 '(op3 op2 op1)) ;error - cal-penalty for deleted line
(calc-penalty'c1 'op4’e21 15'e31 3)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e22 10 'e12 5)
(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 'op6 'e23 12 'e 13 6)
(select-line 'c3 ’c3)
(select-cell 'e13 '(o4 o3 o2 o1))
(determine-allocation-amount 'r1 'e13 50)
(adjust-amount 'r1 50 ’c3 60 50 'c3 'e13 50)
(delete-line 'r1 '(e11 e12 e13))

.m .1 r-r--n n I I. n

(copy-allocation 'c2 70 'e22 Y2 80)
(copy-allocation *c3 10 'e23 'r2 10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.5. The action protocol of subject-3
151

To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

SUPPLV 1 120

80SUPPLV 2 60

SUPPLV 3 8080

60 280Demand 150 70

5 6
(first-cp 'r1 'op1 nil)
(calc-penalty 'rl 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 ’(op1))
(calc-penalty 'r2 'op2 'e2312 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1))
(calc-penalty 'r3 'op3 'e32 9 'e31 3)
(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'cl 'op4 'el 1 8 'e31 3)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e32 9 'a 12 5)
(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1))
(calc-penalty ’c3 ’op6 ’e3310 'e13 6)
(select-line 'r3 'c3)
(select-cell 'r3 'e31 '(op6 op5 op4 op3 op2 op1))
(determine-allocation-amount 'r3 'e31 80)
(adjust-amount 'r3 80 'c1 150 'r3 'e31 80)
(delete-line ’r3 '(e31 e32 e33))

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'c1 'op3 '(op2 op1))
(calc-penalty 'c1 'op3 'e21 15 'e11 8)
(next-cp 'c1 'c2 'op4 '(op3 op2 op1))
(calc-penalty 'c2 'op4 'e2210 'e12 5)
(next-cp 'c2 'c3 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c3 'op5 'e23 12 'e13 6)
(select-line 'cl ’c3)
(select-cell 'c1 'e11 '(op5 op4 op3 op2 op1))
(determine-allocation-amount'c1 'e11 70)
(adjust-amount 'c1 70 'r1 120 'c1 'e11 70)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.5. (Continued)

(delete-line 'c1 '(e11 e21 e31))

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 ’op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp ’r2 'c2 'op3 '(op2 op1))
(calc-penalty ’c2 'op3 'e22 10 'e12 5)
(next-cp 'c2 'c3 'op4 '(op3 op2 op1))
(calc-penalty 'c3 'op4 'e23 12 'e 13 6)
(select-line 'c3 'c3)
(select-cell 'c3 'e23 '(op4 op3 op2 op1))
;(SELECT-LEAST-COST-CELL)
(determine-allocation-amount 'c3 'e23 60)
(adjust-amount 'r1 50 'c3 60 'c3 'e23 60)
(delete-line 'c3 '(e11 e12 e13))
I *r_ ' ,,T ' I"T n
(copy-allocation 'c2 20 'e22 'r2 80)
(copy-allocation 'c3 60 'e23 'r2 60)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.6. The action protocoi of subject-4
153

To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

SUPPLY 1 60 120

80SUPPLY 2

SUPPLY 3 8080

60 280Demand 70150

5 6
(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp *r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e2210)
(next-cp 'r2 'r3 'op3 '(op2 op1))
(calc-penalty ’r3 'op3 'e32 9 'e31 3)
(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 'op4 'e11 8 'e31 3)
(next-cp 'c1 'c2 'op5 '(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e32 9 'e12 5)
(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 'op6 'e33 10 'e13 6)
(select-line 'r3 'c3)
(select-cell 'r3 'e31 '(op6 op5 op4 op3 op2 op1))
(determine-allocation-amount 'r3 'e31 80)
(adjust-amount 'r3 80 'c1 150 'r3 'e31 80)
(delete-line 'r3 '(e31 e32 e33)

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty rr2 'op2 'e23 12 'e2210)
(next-cp 'r2 'c2 'op3 '(op2 op1))
(calc-penalty 'c2 'op3 'e22 10 'e12 5)
(next-cp 'c2 'c3 'op4 '(op3 op2 op1))
(calc-penalty ’c3 ’op4 'e23 12 'e 13 6)
(select-line 'c3 ’c3)
;(SELECT-LINE-AFTER-ALL-OPPORTUNITIES)
(select-cell 'c3 'e13 '(op5 op4 op3 op2 op1))
(determine-allocation-amount 'c3 'e13 60)
(adjust-amount 'c3 60 Y1 120 'c1 ’e13 60)
(delete-line c3 '(e13 e23 e33))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.6. (Continued)

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e11 8 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty ’r2 ’op2 'e21 15 ’e22 10)
(next-cp 'r2 'c2 'op3 '(op2 op1))
(calc-penalty 'c2 'op3 'e2210 'e12 5)
(next-cp 'c2 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 'op4 'e21 15 'e11 8)
(select-line ’c1 ’c1)
(select-cell 'c1 'e11 '(op4 op3 op2 op1))
(determine-allocation-amount 'c1 'e11 60)
(adjust-amount 'r1 60 'c3 70 'c1 'e11 60)
;{VALUE=TOTAL+CURRENT)
(delete-line 'r1 '(e11 e12 e13))
;(VALUE=TOTAL+CURRENT)

(copy-allocation 'c1 10 'e21 'r2 80)
;(VALUE=TOTAL+CURRENT)
(copy-allocation 'c2 70 'e22 Y2 70)
;(VALUE=TOTAL+CURRENT)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.7. The action protocol of subject-5
155

To
DEMAND 1 DEMAND 2 DEMAND 3 SupplyFrom

SUPPLV 1 70 12060

80SUPPLY 2

SUPPLV 3 8080

60 280Demand 70150

5 6
(first-cp 'r1 'op1 nil)
(calc-penalty 'r 1 'op1 'e13 6 'e12 5)
(next-cp 'r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1))
(calc-penalty 'r3 'op3 'e32 9 'e31 3)
(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 'op4 'e11 8 'e31 3)
(next-cp 'c1 'c2 'op5 ’(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e32 9 'e12 5)
(next-cp 'c2 'c3 ’op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 'op6 'e33 10 'e13 6)
(select-line 'r3 ’c3)
(select-cell 'r3 'e31 '(op6 op5 op4 op3 op2 op1))
(determine-allocation-amount 'r3 'e31 80)
(adjust-amount 'r3 80 'c1 150 'r3 'e31 80)
(delete-line 'r3 '(e31 e32 e33))

(first-cp 'r1 'op1 nil)
(calc-penalty 'rl 'op1 'e13 6 'e12 5)
(next-cp *r1 'r2 'op2 '(op1))
(calc-penalty 'r2 'op2 'e23 12 ’e22 10)
(next-cp 'r2 'r3 'op3 '(op2 op1))
;(OPPORTUNITY-LINE-NOT-DELETED)
(calc-penalty 'r3 'op3 'e32 9 'e31 3)
; (SECOND-OPPORTUNITY-CELL-NOT-DELETED FIRST-OPPORTUNITY-CELL-NOT-

DELETED OPPORTUNITY-SECOND-LEAST OPPORTUNITY-FIRST-NEXTLEAST
0 PPORTUNITY-LIN E-NOT-DELETED)

(next-cp 'r3 'c1 'op4 '(op3 op2 op1))
(calc-penalty 'c1 'op4 'e21 15 'e11 8)
(next-cp 'c1 'c2 ’op5 '(op4 op3 op2 op1))
(calc-penalty 'c2 'op5 'e32 9 'e12 5)
;(FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

156
Figure 7.7. (Continued)

(next-cp 'c2 'c3 'op6 '(op5 op4 op3 op2 op1))
(calc-penalty 'c3 ’op6 *e3310 'e13 6)
;(FIRST -OPPORTUNITY-CELL-NOT -DELETED OPPORTUNITY-FIRST-NEXTLEAST)
(select-line 'c1 'c3)
(select-cell 'c1 'e11 '(op6 op5 op4 op3 op2 op1))
(determine-allocation-amount 'c1 'e11 70)
(adjust-amount 'c1 70 'r1 120 'c1 'e11 70)
(delete-line 'c1 '(©11 ©21 e31))

(first-cp 'r1 'op1 nil)
(calc-penalty 'r1 'op1 'e13 6 *e12 5)
(next-cp *r1 'r2 'op2 '(op1))
(calc-penalty ’r2 'op2 'e23 12 'e22 10)
(next-cp 'r2 'c2 'op3 '(op2 op1))
(calc-penalty 'c2 'op3 'e32 9 'e12 5)
;(FIRST-OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-FIRST-NEXTLEAST)
(next-cp 'c2 'c3 'op4 '(op3 op2 op1))
(calc-penalty 'c3 'op4 'e3310 'e13 6)
(select-line 'c2 'c3)
(select-cell 'c2 'e12 '(op4 op3 op2 op1))
(determine-allocation-amount 'c2 'e12 50)
(adjust-amount 'r1 50 'c3 60 ’c2 'a12 50)
;(VALUE=TOTAL+CURRENT)
(delete-line T1 '(el 1 e12 e13))
;(VALUE=TOTAL+CURRENT)

(first-cp 'r2 'op1 nil)
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT)
(calc-penalty 'r2 'op1 'e23 12 'e22 10)
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT)
(next-cp 'r2 'r3 'op2 '(op1))
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT OPPORTUNITY-LINE-
NOT-DELETED)
(calc-penalty 'r3 'op2 'e33 10 'e32 9)
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT SECOND-

OPPORTUNITY-CELL-NOT DELETED FIRST-OPPORTUNITY-CELL-NOT-DELETED
OPPORTUNITY-SECOND-LEAST OPPORTUNITY-FIRST-NEXTLEAST OPPORTUNITY-LINE-
NOT-DELETED)

(next-cp 'r3 'c2 'op3 '(op2 op1))
;(PREFER-COPY-OVER-CALC-PENALTYVALUE=TOTAL+CURRENT)
(calc-penalty 'c2 'op3 'e2210 'e32 9)
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT SECOND-

OPPORTUNITY-CELL-NOT-DELETED OPPORTUNITY-SECOND-LEAST OPPORTUNITY-
FIRST-NEXTLEAST)

(next-cp 'c2 'c3 ’op4 ’(op3 op2 op1))
;(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT)
(calc-penalty ’c3 ’op4 'e33 10 'e13 6)
.(PREFER-COPY-OVER-CALC-PENALTY VALUE=TOTAL+CURRENT SECOND-

OPPORTUNITY-CELL-NOT-DELETED FIRST-OPPORTUNITY-CELL-NOT-DELETED
OPPORTUNITY-SECOND-LEAST OPPORTUNITY-RRST-NEXTLEAST)

(select-line 'c3 ’c3)
;(VALUE=TOTAL+CURRENT)
(select-cell 'c3 'e13 '(op4 op3 op2 op1))
;('VALUE=TOTAL+CURR ENT SELECT-LEAST-COST-CELL)
(determine-allocation-amount 'c3 'e13 50)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.7. (Continued)
157

;(VALUE=TOTAL+CURRENT)
(adjust-amount 'r1 50 'c3 60 'c3 'e13 50)
;(VALUE=TOTAL+CURRENT DELETE-LINE-WHEN-ALL-AMOUNT-ALLOCATED)

(copy-allocation 'c2 20 'e22)
;(VALUE=TOTAL+CURRENT DELETE-LINE-WHEN-ALL-AMOUNT-ALLOCATED)
(copy-allocation 'c3 10 ’e23)
;(VALUE=TOTAL+CURRENT DELETE-LINE-WHEN-ALL-AMOUNT-ALLOCATED)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

158

Chapter 8 LIMITATIONS, IMPLICATIONS, AND FUTURE

DIRECTIONS

8.1 Limitations

A factor that may prohibit PSCD from practical application is its

inefficiency. The biggest bottleneck may be the pattern matcher. In the

performance mode, PSCD must match all productions to working memory and

find all instantiations of applicable productions, which take some time. In

addition PSCD must find violated constraints for every states generated by

possible instantiations. This process actually takes a lot of time. For example,

suppose PSCD finds x number of instantiations and has y number of

constraints, the matcher has to be called yx times! One way of avoiding this

situation may be the use of structured object representation such as frames or

scripts for the representation of working memory elements.

In validating PSCD, this study used a limited set of problems and a small

set of students. It was difficult for us to have a large amount of data because

PSCD is not a fully implemented ITS. When PSCD becomes fully implemented,

PSCD can collect error data when students use PSCD. Since such error data

are in machine readable forms, they can be easily transcribed to action

protocols by a simple function. Implementing PSCD fully is the next research

project.

From the experience of buiiding PSCD, this researcher became strongly

to agree with VanLehn (1983), that getting the right representation language is

the most important aspect of building a computational model. A number of

different representation languages were considered for modeling the task of

transportation problem solving before the current representation language was

determined, but the current language still needs more improvement. With the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

current language, it was a little difficult to separate relevance conditions and

satisfaction conditions in some cases. For example, we expressed the

constraint 14 that says "Select a line after all undeleted lines are associated

with some opportunity" as ((inst =line-1 line)(allocate =line-1)(inst =line

line)(status =line nil)(*no (relate =some dine))** nil)). The exact interpretation

of this expressions would be that If there is a line "line-1" that is selected for

allocation, and there is another "line" whose state is not deleted and the "line" is

not related with any opportunity, then the state violates this constraint.

Although this expression achieves its goal in representing its original concept, it

blurs the distinction between the relevance and the satisfaction conditions.

More study must be directed to devise a better representation language.

8.2 Implications and Future Directions

This study implies that integration of theories is possible with the

computational modeling approach and also fruitful in that it enables practical

applications. Experience from this study also suggests that it may be possible

to integrate even the normative theory, i.e., the theory of rational choice. For

example, the control problem of a production system (i.e., conflict resolution)

can be viewed as selecting the most promising state out of possible states. It

appears that this integration with the normative theory would realize more

practical decision aids in business domains and also provide ample

opportunities for exploring alternative decision theories.

The PSCD architecture proposed in this study has some limitations as

stated in the previous section. It appears that these limitations are not major

disadvantages, but related to minor implementation details. Inefficiency is

pointed out as a problem for inhibiting practical application. The methodology of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

160

object-oriented programming appears to be useful in alleviating the inefficiency

problem of PSCD. It is uncertain how much the methodology can contribute,

but in general structured object representations are more efficient because

related facts can be retrieved easily. However, structuring of related objects will

reduce the flexibility of reasoning. Apparently more study is needed.

A promising path for future studies is to integrate a planning technique

with a learning model, as VanLehn (1987) did. In fact PSCD assumes that all

observable, physical activity is available. Thus when designing an interface, it

is necessary to have all primitive actions present in the screen and to require

students' to choose an action after an action. Only in this way can PSCD have

all observable information necessary for diagnosis. If a planning technique

were incorporated in PSCD, interface design would be simpler and nicer

because a planning technique would allow PSCD to infer missing actions.

Yet another promising path is to explore the relationship between

explanation-based learning and state constraints theory, and between empirical

and rational learning. Both explanation-based learning and state constraint

theory are rational learning, but they are different in that explanation-based

learning works on state generation whereas state constraints theory works on

state evaluations. Integration of these two types of rational learning

mechanisms would yield a better computational model. Integrated learning

which attempts to integrate empirical and rational learning is a recent topic that

attracts much attention (Pazzani, 1990). Integration in itself is worth try.

A recent study shows that semantic construction is not limited to the use

of principled knowledge that are already possessed by learners, but can lead to

development of new principled knowledge (Chi and VanLehn, 1991). This is

the question how you get principled knowledge in the first place. Chi and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

161

VanLehn (1991) called the process of creating new knowledge as

"construction." They posited several subprocesses underlying construction,

such as a natural language inferencing using common sense knowledge,

inferencing based on new information presented in the example, and a kind of

generalization after several self-explanations have been generated. This is

another area to explore.

Finally, but not the least important, much efforts must be directed to

integrate cognitive theories with management related theories. For example, it

may be possible to consider possible effects of task characteristics on

information processing, known as the contingent decision hypothesis. The

contingent decision hypothesis states that judgment and choice are highly

contingent on task characteristics (Einhorn and Hogarth, 1981). Further it is

argued that an individual utilizes a number of different information-processing

strategies to solve decision tasks, and any decision strategy has certain benefits

(accuracy) associated with its use and also certain costs (efforts) (Johnson and

Payne, 1985; Johnson et al., 1988; Payne, 1976; Payne et al. 1988; Payne et

al., 1990). Decision rule selection would then consider both the costs and

benefits associated with each possible strategy, and select the best strategy.

The idea of the strategy selection by the trade-off between strategy's effort and

strategy's accuracy was also supported by several authors (Beach and

Mitchell, 1978) who argued strongly for the idea that strategy selection is the

result of a compromise between the desire to make a correct decision and the

desire to minimize effort. One way to incorporate the theory to PSCD is to

represent decision strategies as rules, use a search mechanism for guiding rule

firings, and have the search being directed by an evaluation function which

represents the trade-off relationship between accuracy and efforts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another way to incorporate the contingent decision hypothesis in the

current PSCD architecture may be to posit a meta-cognitive mechanism which

guides the selection of an information processing strategies from a number of

alternatives (e.g., elimination by aspects, satisficing, lexicographic choice, equal

weighting), and use the selected strategy for search through the problem space.

Although this appears to be a better way, there is a problem of validation. Such

a study may need more dense protocol to validate a meta-cognitive mechanism,

which means more time and efforts. This topic is set aside for future research. It

is believed that the "task" variable is important because it provides a bridge

between theories at the individual level (e.g.., organizational behavior or HIP)

and theories at the organizational level (e.g., organizational theories). In recent

years, there have been many attempts to incorporate organizational context

variables into the design of decision aids. This literature is often called

computer-supported cooperative work (Greif, 1988). In later works, this

researcher will be directing more efforts to the integration of cognitive theories

with high level theories employed in business studies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

163

Alter, S. L. Decision Support Systems: Current Practice and Continuing
Challenge. Reading, MA: Addison-Wesley Publishing Company, 1980.

Anderson, J. R. Language. Memory, and Thought. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1976.

Anderson, J. R„ Greeno, J. G„ Kline, P. J., and Neves, D. M. "Acquisition of
Problem Solving Skill," In Cognitive Skills and Their Acouisition. Ed.
Anderson, J. R., Hillsdale, NJ: Lawrence Erlbaum Associates, 1981, pp. 191-
230.

Anderson, J. A. The Architecture of Cognition. Cambridge, MA: Harvard
University Press, 1983.

Anderson, J. R., Farrell, R., and Sauers, R. "Learning to Program in LISP,"
Cognitive Science 8, 1984, pp. 87-129.

Anderson, J. R. and Reiser, B. J. "The LISP Tutor," Bvte 10,1985, pp. 159-175.

Anderson, J. R. and Jeffries, R. "Novice LISP Errors: Undetected Losses of
Information from Working Memory." Human-Comouter Interaction 1, 1985, pp.
107-131.

Anderson, J. R., Boyle, C. F., and Reiser, B. J. "Intelligent Tutoring Systems,"
Science 228(4698), 1985, pp. 456-462.

Anderson, J. R. "Methodologies for Studying Human Knowledge," Behavioral
and Brain Sciences 10,1987, pp. 467-505.

Anderson, J. R., Corbett, A. T., and Reiser, B. J. Essential LISP. Reading, MA:
Addison-Wesley Publishing Company, Inc., 1987.

Anderson, J. R. "The Expert Module," In Foundations of Intelligent Tutoring
Systems. Ed. Poison, M. C. and Richardson, J. J., Hillsdale, NY: Lawrence
Erlbaum, 1988, pp. 21-53.

Anderson, J. R. and Thompson, R. "Use of Analogy in a Production System
Architecture," In Similarity and Analogical Reasoning. Ed. Vosniadou, S. and
Ortony, A., New York, NY: Cambridge University Press, 1989, pp. 267-297.

Anderson, J. R. "A Theory of the Origins of Human Knowledge," Artificial
Intelligence 40, 1989, pp. 313-351.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

164
Anderson, J. A. The Adaptive Character of Thought. Hillsdale, NY: Lawrence
Erlbaum Associates, 1990.

Anderson, J. R., Boyle, C. F., Corbett, A. T., and Lewis, M. W. "Cognitive
Modeling and Debugging Novice Programs," Artificial Intelligence 42,1990, pp.
7-50.

Anzai, Y. and Simon, H. A. "The Theory of Learning by Doing," Psychological
Review 86, 1979, pp. 124-140.

Argyris, C. "Organizational Learning and Management Information Systems,"
Accounting. Organization and Society 2(2), 1977, pp. 113-123.

Ashton, R. H. "An Experimental Study of Internal Control Judgments," Journal of
Accounting Research 12, 1974, pp. 143-157.

Bailey, J., A. D., Hackenbrack, K., De, P., and Dillard, J. "Artificial Intelligence,
Cognitive Science, and Computational Modeling in Auditing Research: A
Research Approach," Journal of Information Systems (Spring), 1987, pp. 20-40.

Baroody, A. J. and Ginsburg, H. P. "The Relationship between Initial Meaningful
and Mechanical Knowledge of Arithmetic," In Conceptual and Procedural
Knowledge: The Case of Mathematics. Ed. Hiebert, J., Hillsdale, NJ: Lawrence
Erlbaum Associates, 1986, pp. 75-107.

Barr, A. and Feigenbaum, E. A. The Handbook of Artificial Intelligence. Los
Altos, CA: William Kaufmann, Inc., 1981.

Beach, L. R. and Mitchell, T. R. "A Contingency Model for the Selection of
Decision Strategies," Academy of Management Review 3, 1978, pp. 439-449.

Bhaskar, R. and Dillard, J. F. "Human Cognition in Accounting: A Preliminary
Analysis," In Behavioral Experiments in Accounting II. Ed. Burns, T. J.,
Columbus, OH: Ohio State University, 1979, pp. 323-385.

Blanning, R. W. (ed.) Foundations of Expert Systems for Management. Koln,
Germany: Verlag, 1990.

Bower, G. H. and Clapper, J. P. "Experimental Methods in Cognitive Science,"
In Foundations of Cognitive Science. Ed. Posner, M. I., Cambridge, MA: MIT
press, 1989, pp. 245-230.

Brachman, R. J. and Levesque, H. J. (ed.) Readings in Knowledge
Representation. Sam Mateo, CA: Morgan Kaufmann Publishers, Inc., 1985.

Briars, D. J. and Larkin, J. H. "An Integrated Model of Skills in Solving
Elementary Word Problems," Cognition and Instruction 20,1984, pp. 245-296.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

165
Brown, J. S. and Burton, R. "Diagnostic Models for Procedural Bugs in Basic
Mathematical Skills." Cognitive Science 2, 1978, pp. 155-192.

Brown, J. S. and VanLehn, K. "Repair Theory: A Generative Theory of Bugs in
Procedural Skills," Cognitive Science 4, 1980, pp. 379 - 426.

Brown, J. S. and VanLehn, K. "Toward a Generative Theory of "bugs"," In
Addition and Subtraction: A Cognitive Perspective. Ed. Carpenter, T. P. and
Romberg, T. A., Hillsdale, NJ: Lawrence Erlbaum Associates, 1982, pp. 11T-
135.

Brownston, L., Farrell, R., Kant, E., and Martin, N. Programming Expert Systems
in OPS5: An Introduction to Rule-Based Programming. Reading, MA: Addison-
Wesley, 1985.

Buchanan, B. G. and Shortliffe, E. H. (ed.) Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project. Reading,
MA: Addison-Wesley, 1984.

Bundy, A. and Silver, B. "A Critical Survey of Rule Learning Programs," In
Proceedings of the European Conference on Artificial Intelligence. Orsay,
France: 1982, pp. 151-157.

Bundy, A., Silver, B., and Plummer, D. "An Analytical Comparison of Some
Rule-Learning Programs." Artificial Intelligence 27,1985, pp. 137-181.

Burns, H., Parlett, J. W., and Redfield, C. L. (ed.) Intelligent Tutoring Systems:
Evolutions in Design. Hillsdale, NJ: Lawrence Erlbaum Associates, 1991.

Burton, R. R. "Diagnosing Bugs in a Simple Procedure Skill," In Intelligent
Tutoring Systems. Ed. Sleeman, D. and Brown, J. S., New York, NY:
Academic Press, 1982, pp. 79-98.

Caplan, E. H. "Behavioral Accounting Research - An Overview," In Behavioral
Accounting Research: A Critical Analysis. Ed. Ferris, K. R., Columbus, OH:
Century VII Publishing Company, 1988, pp. 3-12.

Card, S. K., Moran, T. P., and Newell, A. The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, 1983.

Charniak, E. and McDermott, D. Introduction to Artificial Intelligence. Reading,
MA: Addison-Wesley, 1985.

Chi, M. T. H. and VanLehn, K. A. "The Content of Physics Self-Explanations,"
The Journal of the Learning Sciences 1(1), 1991, pp. 69-105.

Chomsky, N. Aspects of the Theory of Syntax. Cambridge, MA: The MIT Press,
1965.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

166

Clancey, W. J. "The Epistemology of a Rule-Based Expert-Systems: A
Framework for Explanation," Artificial Intelligence 20, 1983, pp. 215-251.

Clancey, W. J. "Methodology for Building an Intelligent Tutoring System," In
Methods and Tactics in Cognitive Science. Ed. Kintsch, W., Poison, P. G., and
Miller, J. R., Hillsdale, NJ: Lawrence Erlbaum Associates, 1984, pp. 51 - 83.

Clancey, W. J. "From GUIDON to NEOMYCIN and HERACLES in Twenty Short
Lessons: ONR Final Report 1979-1985." Al Magazine 7(3), 1986, pp. 40-60.

Clancey, W. J. "Intelligent Tutoring Systems: A Tutorial Survey," In Current
Issues in Expert Systems. Academic Press, 1987a, pp. 38 - 78.

Clancey, W. J. Knowledge-Based Tutoring. Cambridge, MA: The MIT Press,
1987b.

Clancey, W. J. and Bock, B. "Representing Control Knowledge as Abstract
Tasks and Metarules," In Expert System Applications. Ed. Bock, C. and
Coombs, M. J., Berlin, Germany: Springer-Verlag, 1988, pp. 1-77.

Clancey, W. J. "Artificial Intelligence and Learning Environments: Preface,"
Artificial Intelligence 42(1), 1990, pp. 1 - 6.

Cohen, P. R. and Feigenbaum, E. A. (ed.) The Handbook of Artificial
Intelligence. Los Altos, CA: William Kaufman, 1982.

Davis, R., Buchanan, B., and Shortliffe, E. "Production Rules as a
Representation for a Knowledge-Based Consultation Program," Artificial
Intelligence 8(1), 1977, pp. 15-45.

Davis, R. and Buchanan, B. G. "Meta-Level Knowledge," In Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford Heuristic Programming
Project. Ed. Buchanan, B. G., Reading, MA: Addison-Wesley, 1984, pp. 507-
530.

Davis, G. B. and Olson, M. H. Management Information Systems: Conceptual
Foundations. Structure, and Development. New York, NY: McGraw-Hill Book
Company, 1985.

Dawes, R. M. and Corrigan, B. "Linear Models in Decision-making,"
Psychological Bulletin 81, 1974, pp. 95-106.

Dejong, G. "An Introduction to Explanation-based Learning," In Exploring
Artificial Intelligence. Ed. Shrobe, H. E., San Mateo, CA: Morgan Kaufmann
Publishers, Inc., 1988, pp. 45-82.

Demski, J. S. Information Analysis. Reading, MA: Addison Wesley, 1972.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

167

Dillard, J. F. "Cognitive Science and Decision-making Research in Accounting,"
Accounting. Organizations and Society 9(3/4), 1984, pp. 343-354.

Draper, S. W. "Machine Learning and Cognitive Development," In Computers.
Cognition and Development. Ed. Rutkowska, J. and Crook, C., New York, NY:
John Wiley & Sons Ltd, 1987, pp. 255-1987.

Ein-Dor, P. and Segev, E. Managing Management Information Systems.
Lexington Books, 1977.

Einhorn, H. J. and Hogarth, R. M. "Behavioral Decision Theory: Processes
Judgement of Choice," Annual Review of Psychology 32,1981, pp. 52 - 88.

Forsyth, R. and Rada, R. Machine Learning: Applications in Expert Systems and
Information Retrieval. New York, NY: John Wiley & Sons, 1986.

Frost, R. Introduction to Knowledge Base Systems. New York, NY: MacMillan
Publishing Company, 1986.

Gelman, R. and Gallistel, C. R. The Child's Understanding of Number.
Cambridge, MA: Harvard University Press, 1978.

Gelman, R. and Meek, E. "Preschoolers' Counting: Principle before Skill,"
Cognition 13, 1983, pp. 343-359.

Gelman, R. and Meek, E. "The Notion of Principle: The Case of Counting," In
Conceptual and Procedural Knowledge: The Case of Mathematics. Ed. Hiebert,
J., Hillsdale, NJ: Lawrence Erlbaum Associates, 1986, pp. 29-55.

Gentner, D. "The Mechanisms of Analogical Learning," In Similarity and
Analogical Reasoning. Ed. Vosniadou, S. and Ortony, A., New York, NY:
Cambridge University Press, 1989, pp. 199-241.

Georgeff, M. P. "Procedural Control in Production Systems," Artificial
Intelligence 18, 1982, pp. 175-201.

Gick, M. L. and Holyoak, K. J. "Analogical Problem Solving," Cognitive
Psychology 12, 1980, pp. 306-355.

Gick, M. L. and Holyoak, K. J. "Schema Induction and Analogical Transfer,"
Cognitive Psychology 15, 1983, pp. 1-38.

Glaser, R. "Special Issue: Psychological Science and Education," American
Psychologists 40(10), 1986, pp. 573-574.

Glaser, R. and Bassok, M. "Learning Theory and the Study of Instruction,"
Annual Review of Psychology 40,1989, pp. 631-666.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

168

Glaser, R. "The Reemergence of Learning Theory within Instructional
Research," American Psychologist 45(1), 1990, pp. 29-39.

Gorry, G. A. and Scott Morton, M. S. "A Framework for Management Information
Systems," Sloan Management Review 13(1), 1971, pp. 55-70.

Green, P. E. and Rao, V. R. Applied Multidimensional Scaling: A Comparison of
Approaches and Algorithms. New York, NY: Holt, Rinehart & Winston, 1972.

Greeno, J. G., Riley, M. S., and Gerlman, R. "Conceptual Competence for
Children's Counting," Cognitive Psychology 16, 1984, pp. 94-143.

Greeno, J. G. "Situations, Mental Models, and Generative Knowledge," In
Complex Information Processing: The Impact of Herbert A. Simon. Ed. Klahr, D.
and Kotovsky, K., Hillsdale, NJ: Lawrence Erlbaum Associates, 1989, pp. 285-
SI 8.

Greif, I. (ed.) Computer-Supported Cooperative Work: A Book of Readings.
San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1988.

Hayes, J. R. and Simon, H. A. "Psychological Differences among Problem
Isomorphs," In Cognitive Theory. Ed. Castellan, J., Pisoni, D. B., and Potts, G.,
Hillsdale, NJ: Lawrence Erlbaum Associates, 1974, pp. 21-41.

Hayes-Roth, F. and McDermott, J. "Learning Structured Patterns from
Examples," In Proceedings of Third International Joint Conference on Pattern
Recognition. 1976, pp. 419-423.

Hiebert, J. (ed.) Conceptual and Procedural Knowledge: The Case of
Mathematics. Hillsdale, NY: Lawrence Erlbaum Associates, 1986.

Hiebert, J. and Lefevre, P. "Conceptual and Procedural Knowledge in
Mathematics," In Conceptual and Procedural Knowledge: The Case of
Mathematics. Ed. Hiebert, J., Hillsdale, NJ: Lawrence Erlbaum Associates,
1986, pp. 1-23.

Hoffman, P. J., Slovic, P., and Rorer, L. G. "An Analysis-of-Variance Model for
the Assessment of Configural Cue Utilization in Clinical Judgement,"
Psychological Bulletin 69, 1968, pp. 338-349.

Hogarth, R. M. Judgment and Choice: The Psychology of Decision. Chichester,
England: Wiley, 1980.

Hogarth, R. M. and Reder, M. W. (ed.) Rational Choice: The Contrast between
Economics and Psychology. Chicago, IL: The University of Chicago Press,
1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

169
Hogarth, R. M. (ed.) insights in Decision-making: A Tribute to Hillel J. Einhorn.
Chicago, IL: The University of Chicago Press, 1990.

Holland, J. H., Holyoak, K. J., Nisbett, R. E, and Thagard, P. R. Induction:
Processes of Inference. Learning, and Discovery. Cambridge, MA: MIT press,
1987.

Holyoak, K. J. and Thagard, P. R. "A Computational Model of Analogical
Problem Solving," In Similarity and Analogical Reasoning. Ed. Vosniadou, S.
and Ortony, A., New York, NY: Cambridge University Press, 1989, pp. 242-266.

Hursch, C., Hammond, K. R., and Hursch, J. L. "Some Methodological
Considerations in Multiple Cue Probability Studies," Psychological Reviews 71,
1964, pp. 42-60.

Jackson, P. Introduction to Expert Systems. Reading, MA: Addison-Wesley,
1990.

Jam's, I. L. and Mann, L. Decision-making: A Psychological Analysis of Conflict.
Choice, and Commitment. New York, NY: Free Press, 1977.

Johnson, E. J. and Payne, J. W. "Effort and Accuracy in Choice," Management
Science 31(4), 1985, pp. 395 - 414.

Johnson, W. L. Intention-Based Diagnosis of Novice Programming Errors. Los
Altos, CA: Morgan Kaufmann Publishers, 1986.

Johnson, E. J., Payne, W., and Bettman, J. R. "Information Displays and
Preference Reversals," Organizational Behavior and Human Decision
Processes 42, 1988, pp. 1-21.

Johnson-Laird, P. N. Mental Models: Towards a Cognitive Science of
Language. Inference, and Consciousness. New York, NY: Cambridge
University Press, 1983.

Johnson-Laird, P. N. and Byrne, R. M. J. Deduction. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1990.

Joyce, E. J. and Biddle, G. C. "Anchoring and Adjustment in Probabilistic
Inference in Auditing." Journal of Accounting Research. 1981, pp. 120-145.

Just, M. A. and Carpenter, P. A. "A Theory of Reading: From Eye Fixation to
Comprehension," Psychological Review 87, 1980, pp. 329-354.

Kahneman, D., Slovic, P., andTversky, A. Judgement under Uncertainty:
Heuristics and Biases. Cambridge, MA: Cambridge University Press, 1982.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

170
Kearsley, G. "Overview," In Artificial Intelligence and Instruction: Applications
and Methods. Ed. Kearsley, G., Reading, MA: Addison-Wesley Publishing
Company, 1987, pp. 3-10.

Keen, P. G. W. and Scott Morton, M. Decision Support Systems: An
Organizational Perspective. Reading, MA: Addison Wesley, 1978.

Keeney, R. L. and Raiffa, H. Decisions with Multiple Objectives: Preferences and
Value Tradeoffs. New York, NY: Wiley, 1976.

Kibler, D. and Langley, P. "Machine Learning as an Experimental Science," In
Proceedings of the Third European Working Session on Learning. Ed.
Sleeman, D., London, England: Pitman Publishing, 1988, pp. 81-91.

Kieras, D. E. "The Why, When, and How of Cognitive Simulation: A Tutorial,"
Behavioral Research Methods. Instruments, and Computers 22, 1985, pp. 265-
394.

Kintsch, W., James, R. M., and Poison, P. G. (ed.) Method and Tactics in
Cognitive Science. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc., 1984.

Klahr, D. and Wallace, J. G. Cognitive Development: An Information Processing
View. Hillsdale, NJ: Lawrence Erlbaum Associates, 1976.

Klahr, D., Langley, P., and Neches, R. (ed.) Production System Models of
Learning and Development. Cambridge, MA: The MIT Press, 1987.

Ko, C. and Mock, T. J. "Behavioral Research in Accounting Information
Systems," In Behavioral Accounting Research: A Critical Analysis. Ed. Ferris,
K. R., Columbus, OH: Century VII Publishing Company, 1988, pp. 171-202.

Kodratoff, Y. Introduction to Machine Learning. Palo Alto, CA: Morgan Kauffman
Publishers, 1986.

Kodratoff, Y. and Michalski, R. S. (ed.) Machine Learning: An Artificial
Intelligence Approach. San Mateo, CA: Morgan Kaufman, 1990.

Kotovsky, K., Hayes, J. R., and Simon, H. A. "Why are Some Problems Hard?
Evidence from Tower of Hanoi," Cognitive Psychology 17,1985, pp. 248-294.

Kowalski, B. and VanLehn, K. "CIRRUS: Inducing Subject Models from Protocol
Data," In The Tenth Annual Conference of the Cognitive Science Society. Ed.
Patel, V. L. and Groen, G. J., Hillsdale, NJ: Lawrence Erlbaum Associates,
1988, pp. 623-629.

Kreps, D. M. Notes on the Theory of Choice. Boulder, CL: Westview Press,
1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

171
Laird, J. E., Newell, A., and Rosenbloom, P. S. "SOAR: An Architecture for
General Intelligence," Artificial Intelligence 33,1987, pp. 1-64.

Langley, P., Neches, R., Neves, D., and Anzai, Y. "A Domain Independent
Framework for Learning Procedures," International Journal of Policy Analysis
and Information Systems 4(2), 1980, pp. 163-197.

Langley, P. and Simon, H. A. "The Central Role of Learning in Cognition," In
Cognitive Skills and Their Acquisition. Ed. Anderson, J. R., Hillsdale, NJ:
Lawrence Erlbaum Associates, 1981, pp. 361-380.

Langley, P. "Learning Search Strategies through Discrimination," International
Journal of Man-Machine Studies 18, 1983a, pp. 513-541.

Langley, P. "Exploring the Space of Cognitive Architectures," Behavior
Research Methods & Instrumentation 15(2), 1983b, pp. 289-299.

Langley, P. and Ohlsson, S. "Automated Cognitive Modeling," In Proceedings
of the National Conference on Artificial Intelligence. Austin, TX: William
Kaufmann, 1984, pp. 193-197.

Langley, P. "Learning to Search: From Weak Methods to Domain-Specific
Heuristics," Cognitive Science 9, 1985, pp. 217-260.

Langley, P. "A General Theory of Discrimination Learning," In Production
System Models of Learning and Development. Ed. Klahr, D., Langley, P., and
Neches, R., Cambridge, MA: The MIT Press, 1987, pp. 99 - 162.

Langley, P., Wogulis, J., and Ohlsson, S. "Rules and Principles in Cognitive
Diagnosis," In Diagnostic Monitoring of Skill and Knowledge Acouisition. Ed.
Frederiksen, N., Hillsdale, NJ: Lawrence Erlbaum Associates, 1990, pp. 217-
250.

Larkin, J. H., McDermott, J., Simon, D. P., and Simon, H. A. "Expert and Novice
Performance in Solving Physics Problems," Science 208, 1980, pp. 1335-
1342.

Larkin, J. H. "Enriching Formal Knowledge: A Model for Learning to Solve
Problems in Physics," In Cognitive Skills and Their Acouisition. Ed. Anderson,
J. R., Hillsdale, NJ: Lawrence Eribaum Associates, 1981, pp. 311-344.

Larkin, J. H. "The Role of Problem Representation in Physics," In Mental
Models. Ed. Gentner, D. and Stevens, A. L., Hillsdale, NJ: Lawrence Erlbaum
Associates, 1983, pp. 75-98.

Larkin, J. H., McDermott, J., Simon, D. P., and Simon, H. A. "Models of
Competence in Solving Physics Problems," Cognitive Science 4, 1984, pp.
317-345.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

172

Larkin, J. H. and Simon, H. A. "Why a Diagram is (Sometimes) Worth 10,000
Words." Cognitive Science 11, 1987, pp. 65-100.

Larkin, J. H. "Display-Based Problem Solving," In Complex Information
Processing: The Impact of Herbert A. Simon. Ed. Klahr, D. and Kotovsky, K.,
Hillsdale, NJ: Lav/rence Erlbaum Associates, 1989, pp. 319-341.

Lee, S. M. Goal Programming for Decision Analysis. Philadelphia, PA:
Auerbach Publishers, 1972.

Lee, S. M., Moore, L. J., and Taylor, B. W. Management Science. Needham
Heights, MA: Allyn and Bacon, 1990.

Libby, R. "Accounting Ratios and the Prediction of Failure: Some Behavioral
Evidence," Journal of Accounting Research 13,1975, pp. 150-161.

Libby, R. "Bankers' and Auditors' Perceptions of the Message Communicated
bv the Audit Report." Journal of Accounting Research 17, 1979, pp. 99-122.

Libby, R. Accounting and HIP: Theory and Applications. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

Mandl, H. and Lesgold, A. (ed.) Learning Issues for Intelligent Tutoring
Systems. New York, NY: Springer-Verlag, 1988.

Matz, M. "Toward A Process Model for High School Algebra Errors," In
Intelligent Tutoring Systems. Ed. Sleeman, D. and Brown, J. S., New York, NY:
Academic, 1982, pp. 25-49.

McDermott, J. and Forgy, C. "Production System Conflict Resolution
Strategies," In Pattern-Directed Systems. Ed. Waterman, D. A. and Hayes-
Roth, F., New York, NY: Academic Press, 1978, pp. 177-202.

McDermott, J. and Larkin, J. H. "Re-Representing Textbook Physics Problems,"
In Proceedings of the 2nd National Conference of the Canadian Society for
Computational Studies of Intelligence. Toronto, Canada: University of Toronto
Press, 1978, pp. 156-164.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (ed.) Machine Learning: An
Artificial Intelligence Approach. Palo Alto, CA: Tioga, 1983.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (ed.) Machine Learning: An
Artificial Intelligence Approach. Palo Altos, CA: Morgan Kaufman, 1986.

Minsky, M. "A Framework for representing Knowledge," In The Psychology of
Computer Vision. Ed. Winston, P., New York, NY: McGraw-Hill, 1975, pp. 211-
277.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

173

Minton, S. Learning Search Control Knowledge: An Explanation-Based
Approach. Norwell, MA: Kluwer Academic Publishers, 1988.

Mitchell, T. M. "Version Spaces: A Candidate Elimination Approach to Rule
Learning," In Proceedings of the Fifth International Joint Conference on
Artificial Intelligence. 1977, pp. 305-310.

Mitchell, T. M., Carbonell, J. G., and Michalski, R. S. (ed.) Machine Learning: A
Guide to Current Research. Norwell, MA: Kluwer Academic Publishers, 1986.

Neches, R. T. "Simulation Systems for Cognitive Psychology," Behavioral
Research Methods. Instruments, and Computers 14, 1982, pp. 77-91.

Neches, P., Langley, P., and Klahr, D. "Learning, Development, and Production
Systems," In Production System Models of Learning and Development. Ed.
Klahr, D., Langley, P., and Neches, R., Cambridge, MA: The MIT Press, 1987,
pp. 1-53.

Newell, A. "Heuristic Programming: Ill-Structured Problems," In Progress in
Operations Research. Ed. Aronofsky, J., 1969, pp. 362-414.

Newell, A. and Simon, H. A. Human Problem Solving. Englewood Cliffs, NJ:
Prentice Hall, 1972.

Newell, A. "You Can't Play 20-Questions with Nature and Win: Projective
Comments on the Papers of the Symposium," In Visual Information Processing.
Ed. Chase, W. G., New York, NY: Academic Press, 1973a, pp. 283-308.

Newell, A. "Production Systems: Models of Control Structure," In Visual
Information Processing. Ed. Chase, W., New York, NY: Academic Press,
1973b, pp. 463-526.

Newell, A. and Simon, H. A. "Computer Science as Empirical Inquiry: Symbols
and Search." Communication of ACM 19, 1976, pp. 113-126.

Newell, A. "On the Analysis of Human Problem Solving Protocols," In Thinking:
Readings in Cognitive Science. Ed. Johnson-Laird, P. N. and Wason, P. C.,
Cambridge, MA: Cambridge University Press, 1977, pp. 46-61.

Newell, A. "Reasoning, Problem Solving, and Decision Processes: The
Problem Space as a Fundamental Category," In Attention and Performance.
Ed. Nickerson, R., Hillsdale, NJ: Lawrence Erlbaum Associates, 1980, pp. 693-
720.

Newell, A. "The Knowledge Level." The Al Magazine 18, 1981, pp. 1-20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

174
Newell, A. Unified Theories of Cognition. Cambridge, MA: Harvard University
Press, 1990.

Nisbett, R. E. and Wilson, T. D. "Telling More Than We Can Know: Verbal
Reports on Mental Processes." Psychological Review 84, 1977, pp. 231-259.

Norman, D. A. "Categorization of Action Slips," Psychological Review 88,1981,
pp. 1-15.

O'Leary, D. F. "Validation of Expert Systems-With Application to Auditing and
Accounting Expert Systems," Decision Sciences 18, 1987, pp. 468-485.

Ohlsson, S. "Some Principles of Intelligent Tutoring," Instructional Science 14,
1986a, pp. 293-326.

Ohlsson, S. "Rational vs. Empirical Learning," In Information Processing. Ed.
Kugler, H. J., Amsterdam: Elsevier Science Publishers, 1986b, pp. 841.

Ohlsson, S. and Langley, P. "Psychological Evaluation of Path-Hypothesis in
Cognitive Diagnosis," In Learning Issues for Intelligent Tutoring Systems. Ed.
Mandl, H. and Lesgold, A., New York, NY: Springer-Verlag, 1988, pp. 42-62.

Ohlsson, S. "Computer Simulation and its Impact on Educational Research and
Practice," International Journal of Educational Research 12,1988, pp. 534.

Ohlsson, S. and Rees, E. "The Function of Conceptual Understanding in the
Learning of Arithmetic Procedures," Cognition and Instruction 8(2), 1991, pp.
103- 179.

Paradice, D. B. and Courtney, J. F. "Organizational Knowledge Management,"
Information Resources Management Journal 2(3), 1989, pp. 1-13.

Partridge, D. A New Guide to Artificial Intelligence. Norwood, NJ: Albex
Publishing Corporation, 1991.

Pau, L. F„ Mottiwalla, J., and Pao, Y. H. (ed.) Expert Systems in Economics.
Finance and Banking. Amsterdam: North Holland, 1989.

Payne, J. W. "Task Complexity and Contingent Processing in Decision-making:
An Information Search and Protocol Analysis," Organizational Behavior and
Human Performance 16, 1976, pp. 366-387.

Payne, J. W., Bettman, J. R., and Johnson, E. J. "Adaptive Strategy Selection in
Decision-making," Journal of Experimental Psychology: Learning. Memory, and
Cognition 14, 1988, pp. 534-552.

Payne, S. J. and Squibb, H. R. "Algebra Mal-Rules and Cognitive Account of
Error." Cognitive Science 14, 1990, pp. 445-481.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

175

Payne, J. W., Bettman, J. R., and Johnson, E. J. "The Adaptive Decision Maker:
Effort and Accuracy in Choice," In Insights in Decision-making: A Tribute to
Hillel J. Einhorn. Ed. Hogarth, R. M., Chicago, IL: The University of Chicago
Press, 1990, pp. 129-153.

Pazzani, M. J. "Integrating Explanation-Based and Empirical Learning Methods
in OCCAM," In Proceedings of the Third European Working Session on
Learning. Ed. Sleeman, D., London, England: Pitman Publishing, 1988, pp.
147-166.

Pazzani, M. J. Creating a Memory of Causal Relationships: An integration of
Empirical and Explanation-Based Learning Methods. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1990.

Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Reading, MA: Addison-Wesley, 1984.

Peters, J. M., Lewis, B. L., and Dhar, V. "Assessing Inherent Risk During Audit
Planning: The Development of a Knowledge Based Model," Accounting.
Organizations and Society 14(4), 1989, pp. 359-378.

Piaget, J. The Child's Conception of the World. New York, NY: Harcourt, 1929.

Piaget, J. Success and Understanding. Cambridge, MA: Harvard University
Press, 1976.

Poison, M. C. and Richardson, J. J. (ed.) Foundations of Intelligent Tutoring
Systems. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988.

Posner, M. J. (ed.) Foundations of Cognitive Science. M.l.T, 1989.

Post, E. "Formal Reductions of the General Combinatorial Problem," American
Journal of Mathematics 65, 1943, pp. 197-268.

Psotka, J., Massey, L. D., and Mutter, S. A. (ed.) Intelligent Tutoring Systems:
Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum Associates, 1988.

Pylyshyn, Z. W. "The Role of Competence Theories in Cognitive Psychology,"
Journal of Psvcholinouisitic Research 2(1), 1973, pp. 21-50.

Pylyshyn, Z. W. "Computation and Cognition: Issues in the Foundations of
Cognitive Science." The Behavioral and Brain Sciences 3, 1980, pp. 11-169.

Pylyshyn, Z. W. Computation and Cognition: Toward a Foundation for Cognitive
Science. Cambridge, MA: The MIT Press, 1984.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

176
Pylyshyn, Z. W. "Computing in Cognitive Science," In Foundations of Cognitive
Science. Ed. Posner, M. I., Cambridge, MA: MIT press, 1989, pp. 49-92.

Raiffa, H. Decision Analysis: Choice Under Uncertainty. Reading, MA: Addison
Wesley, 1974.

Reason, J. Human Error. Cambridge, MA: Cambridge University Press, 1990.

Resnick, L. B. "Syntax and Semantics in Learning to Subtract," In Addition and
Subtraction: A Cognitive Perspective. Ed. Carpenter, T. P. and Romberg, T. A.,
Hillsdale, NJ: Lawrence Erlbaum Associates, 1982, pp. 136-155.

Resnick, L. B. "A Developmental Theory of Number Understanding," In The
Development of Mathematical Thinking. Ed. Ginsburg, H. P., New York, NY:
Academic Press, 1983, pp. 109-151.

Resnick, L. B. "Cognition and Instruction: Recent Theories of Human
Competence," In Psychology and Learning. Ed. Hammonds, B. L.,
Washington, D. C.: American Psychological Association, 1984, pp. 127-186.

Resnick, L. B. and Neches, R. "Factors Affecting Individual Differences in
Learning Ability," In Advances in the Psychology of Human Intelligence. Ed.
Sternberg, R. J., Hillsdale, NJ: Lawrence Erlbaum, 1984, pp. 275-323.

Resnick, L. B. "Constructing Knowledge in School," In Development and
Learning: Conflict or Congruence ?. Ed. Liben, L. S., Hillsdale, NJ: Lawrence
Erlbaum Associates, 1987, pp. 19-50.

Resnick, L. B. and Omanson, S. F. "Learning to Understand Arithmetic," In
Advances in Instructional Psychology. Ed. Glaser, R., Hillsdale, NJ: Lawrence
Erlbaum Associates, 1987, pp. 41-95.

Rich, E. Artificial Intelligence. New York, NY: McGraw-Hill Book Company, 1983.

Riesbeck, C. K. and Schank, R. C. Inside Case-Based Reasoning. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1989.

Riley, M. S., Greeno, J. G., and Heller, J. I. "Development of Children's
Problem-Solving Ability in Arithmetic," In The Development of Mathematical
Thinking. Ed. Ginsburg, H. P., New York, NY: Academic Press, 1983, pp. 153-
196.

Rosenbloom, P. and Newell, A. "Learning by Chunking: A Production System
Model of Practice," In Production System Models of Learning and
Development. Ed. Klahr, D., Langley, P., and Neches, R., Cambridge, MA: The
MIT Press, 1987, pp. 221-285.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

177
Rosenbloom, P. S., Laird, J. E., Newell, A., and McCarl, R. "A Preliminary
Analysis of the Soar Architecture as a Basis for General Intelligence," Artificial
Intelligence 47, 1991, pp. 289-325.

Rumelhart, D. E. and Norman, D. A. "Analogical Processes in Learning," In
Cognitive Skills and Their Acquisition. Ed. Anderson, J. R., Hillsdale, NJ:
Lawrence Erlbaum Associates, 1981, pp. 335-360.

Rumelhart, D. E. and McClelland, J. L. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Cambridge, MA: The MIT Press,
1986.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., and Hinton, G. E. "Schemata
and Sequential Thought Processes in PDP Models," In Parallel Distributed
Processing. Ed. McClelland, J. L., Rumelhart, D. E., and Group, P. R.,
Cambridge, MA: MIT Press, 1986, pp. 7-57.

Sauers, R. "Controlling Expert Systems," In Expert System Applications. Ed.
Bole, L. and Coombs, M., Berlin, Germany: Springer-Verlag, 1988, pp. 79-197.

Schank, R. C. and Abelson, R. P. Scripts. Plans. Goals, and Understanding: An
Enquiry into Human Knowledge Structures. Hillsdale, NJ: Lawrence Erlbaum
Associates, 1977.

Schoemaker, P. J. H. "The Quest for Optimality: A Positive Heuristic of
Science?," Behavioral and Brain Sciences 14, 1991, pp. 205-245.

Self, J. "Student Models in Computer-Aided Instruction," International Journal of
Man-Machine Studies 6, 1974, pp. 197-221.

Self, J. (ed.) Artificial Intelligence and Human Learning: Intelligent Computer-
Aided Instruction. New York, NY: Chapman and Hall, 1988.

Shanteau, J. "Cognitive Heuristics and Biases in Behavioral Auditing: Review,
Comments and Observations." Accounting. Organizations and Society 14,
1989, pp. 165-177.

Shields, M. D. "An Analysis of Experimental Accounting Research on
Managerial Decision-making," In Behavioral Accounting Research: A Critical
Analysis Ed. Ferris, K. R., Columbus, OH: Century VII Publishing Company,
1988, pp. 203-227.

Silver, E. A. "Using Conceptual and Procedural Knowledge: A Focus on
Relationships," In Conceptual and Procedural Knowledge: The Case of
Mathematics. Ed. Hiebert, J., Hillsdale, NJ: Lawrence Erlbaum Associates,
1986, pp. 181-197.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

www.manaraa.com

178
Simon, H. A. "A Behavioral Model of Rational Choice," Quarterly Journal of
Economics 69, 1955, pp. 174-184.

Simon, H. A. The New Science of Management Decision. New York, NY:
Harper and Row, 1960.

Simon, H. A. Administrative Behavior: A Study of Decision-Making Processes in
Administrative Organization. New York, NY: The Free Press, 1976.

Simon, H., A. The Sciences of Artificial. Cambridge, MA: MIT press, 1979.

Simon, H. A. "Search and Reasoning in Problem Solving," Artificial Intelligence
21, 1983, pp. 7-19.

Simon, H. A. and Kaplan, C. A. "Foundations of Cognitive Science," In
Foundations of Cognitive Science. Ed. Posner, M. I., Cambridge, MA: MIT
press, 1989, pp. 1-47.

Simon, H. A. "How to Win at Twenty Questions with Nature," In Models of
Thought. Ed. Simon, H. A., New Haven, CT: Yale University Press, 1989, pp.
20-29.

Simon, H. A. (ed.) Models of Thought. New Haven, CT: Yale University Press,
1989.

Simon, H. A. "Invariants of Human Behavior," Annual Review of Psychology 41,
1990, pp. 1-19.

Simon, H. A. and Lean, G. "Problem Solving and Rule Induction: A Unified
View," In Readings in Machine Learning. Ed. Shavlik, J. W. and Dietterich, T.
G., San Mateo, CA: Morgan Kaufmann Publishers, 1990, pp. 26-37.

Singley, M. K. and Anderson, J. R. The Transfer of Cognitive Skill. Cambridge,
MA: Harvard University Press, 1989.

Slatter, P. E. Building Expert Systems: Cognitive Emulation. New York, NY:
John Wiley & Sons, 1987.

Sleeman, D. H. and Smith, M. J. "Modeling Student's Problem Solving,"
Artificial Intelligence 16, 1981, pp. 171-188.

Sleeman, D. H. and Brown, J. S. (ed.) Intelligent Tutoring Systems. New York,
NY: Academic Press, 1982.

Sleeman, D. "Assessing Aspects of Competence in Basic Algebra," In
Intelligent Tutoring Systems. Ed. Sleeman, D. and Brown, J. S., New York, NY:
Academic Press, 1982, pp. 185-199.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

179
Sleeman, D., Langley, P., and Mitchell, T. M. "Learning from Solution Paths: An
Approach to the Credit Assignment Problem," The Al Magazine (Spring), 1982,
pp. 48-52.

Sleeman, D. "An Attempt to Understand Student's Understanding of Basic
Algebra." Cognitive Science 6,1984, pp. 387-412.

Sleeman, D. "Basic Algebra Revisited: A Study with 14-year-olds," International
Journal of Man-Machine Studies 22, 1985, pp. 127-149.

Slovic, P., Fischhoff, B., and Lichtenstein, S. "Behavioral Decision Theory,"
Annual Review of Psychology 28, 1977, pp. 1-39.

Smith, D. A. and Greeno, J. G. "A Model of Competence for Counting," Cognitive
Science 13, 1989, pp. 183-211.

Sternberg, S. "Two Operations in Character Recognition: Some Evidence from
Reaction-Time Measurements." Perception and Psvchophvsics 2, 1967, pp. 45-
53.

Sternberg, S. "Memory-Scanning: Mental Processes Revealed by Reaction
Time Experiments." Acta Psychology 30, i 969, pp. 276-315.

Stevens, A., Collins, A., and Goldin, S. E. "Misconceptions in Students'
Understanding," In Intelligent Tutoring Systems. Ed. Sleeman, D. and Brown,
J. S., New York, NY: Academic Press, 1982, pp. 13-24.

Tchogovadze, G. G., Gogichaishvili, G. G., and Abbasov, 1.1. "Principles of
Intelligent Learning Systems Design," International Journal of Man-Machine
Studies 28, 1988, pp. 391-416.

Tulving, E. Elements of Episodic Memory. New York, NY: Oxford University
Press, 1983.

Tversky, A. and Kahneman, D. "Judgment under Uncertainty: Heuristics and
Biases." Science 185, 1974, pp. 1124-1131.

Tversky, A. and Kahneman, D. "The Framing of Decisions and the Psychology
of Choice," Science 211, 1981, pp. 453-458.

Ungson, G. R. and Braunstein, D. N. (ed.) Decision-making: An Interdisciplinary
Inquiry. Boston, MA: Kent Publishing Company, 1982.

VanLehn, K. and Brown, J. S. "Planning Nets: A Representation for Formalizing
Analogies and Semantic Models of Procedural Skills," In Cognitive Process
Analyses of Learning and Problem Solving. Ed. Snow, R. E„ Frederico, P. A.,
and Montague, W. E., Hillsdale, NJ: Lawrence Erlbaum Associates, 1980, pp.
95-137.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

180

VanLehn, K. "Bugs are not Enough: Empirical Studies of Bugs, Impasses and
Repairs in Procedural Skills," The Journal of Mathematical Behavior 3(3), 1982,
pp. 3-71.

VanLehn, K. "On the Representation of Procedures in Repair Theory," In The
Development of Mathematical Thinking. Ed. Ginsburg, H. P., New York, NY:
Academic Press, 1983, pp. 197-252.

VanLehn, K., Brown, J. S., and Greeno, J. G. "Competitive Argumentation in
Computational Theories of Cognition," In Methods and Tactics in Cognitive
Science. Ed. Kintsch, W., Miller, J., and Poison, P., Hillsdale, NJ: Lawrence
Erlbaum Associates, 1984, pp. 235-262.

VanLehn, K. "Arithmetic Procedures Are Induced from Examples," In
Conceptual and Procedural Knowledge: The Case of Mathematics. Ed. Hiebert,
J. H., Hillsdale, NJ: Lawrence Erlbaum Associates, Inc., 1986, pp. 133-179.

VanLehn, K. and Garlick, S. "Cirrus: An Automated Protocol Analysis Tool," In
Proceedings of the Fourth Machine Learning Workshop. Ed. Langley, P. Los
Altos, CA: Morgan Kaufmann, 1987, pp. 205-217.

VanLehn, K. "Learning One Subprocedure per Lesson," Artificial Intelligence
31, 1987, pp. 1-40.

VanLehn, K. "Student Modeling," In Foundations of Intelligent Tutoring
Systems. Ed. Poison, M. C. and Richardson, J. J., Hillsdale, NY: Lawrence
Erlbaum, 1988, pp. 55-77.

VanLehn, K. "Problem Solving and Cognitive Skill Acquisition," In Foundations
of Cognitive Science. Ed. Posner, M. I., Cambridge, MA: The MIT Press, 1989,
pp. 527-579.

VanLehn, K., Ball, W., and Kowalski, B. "Non-LIFO Execution of Cognitive
Procedures," Cognitive Science 13, 1989, pp. 415-465.

VanLehn, K. Mind Bugs: The Origins of Procedural Misconception. Cambridge,
MA: The MIT Press, 1990.

VanLehn, K. (ed.) Architectures for Intelligence. Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc., 1991.

VanLehn, K. "Rule Acquisition Events in the Discovery of Problem-Solving
Strategies." Cognitive Science 15, 1991, pp. 1-47.

Vasarhelyi, M. (ed.) Artificial Intelligence in Accounting and Auditing Using
Expert Systems. New York, NY: Markus Wiener Publishing, Inc., 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

181
Waller, W. S. and Felix, W. L. "Auditors' Covariation Judgments," Accounting
Review , 1987, pp. 275-292.

Waterman, D. A. "Generalization Learning Techniques for Automating the
Learning of Heuristics," Artificial Intelligence 1, 1970, pp. 121-170.

Waterman, D. A. "Adaptive Productions Systems," In Proceedings of the Fourth
International Joint Conference on Artificial Intelligence. Tbilisi, USSR: 1975,
pp. 296-303.

Waterman, D. A. and Hayes-Roth, F. (ed.) Pattern-Directed Systems. New
York, NY: Academic Press, 1978.

Waterman, D. A. Building Expert Systems. New York, NY: McGraw-Hill Book
Company, 1983.

Wenger, E. Artificial Intelligence and Tutoring Systems: Computational and
Cognitive Approaches to the Communication of Knowledge. Los Altos, CA:
Morgan Kaufmann Publishers, 1987.

Wilkins, D. C., Clancey, W. J., and Buchanan, B. G. "Using and Evaluating
Differential Modeling in Intelligent Tutoring and Apprentice Learning Systems,"
In Intelligent Tutoring Systems: Lessons Learned. Ed. Psotka, J., Massey, L. D.,
and Mutter, S. A., Hillsdaie, NJ: Lawrence Erlbaum Associates, 1988, pp. 257-
277.

Winston. Artificial Intelligence. Reading, MA: Addision-Wesley Publishing
Company, 1984.

Winston, P. H. and Horn, B. K. P. LISP. Reading, MA: Addison-Wesley
Publishing Company, 1989.

Winterfeldt, D. V. and Edwards, W. Decision Analysis and Behavioral Research.
New York, NY: Cambridge University Press, 1986.

Wright, G. (ed.) Behavioral Decision-making. New York, NY: Plenum Press,
1985.

Young, R. M. and O'Shea, T. "Errors in Children's Subtraction," Cognitive
Science 5, 1981, pp. 153-177.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

